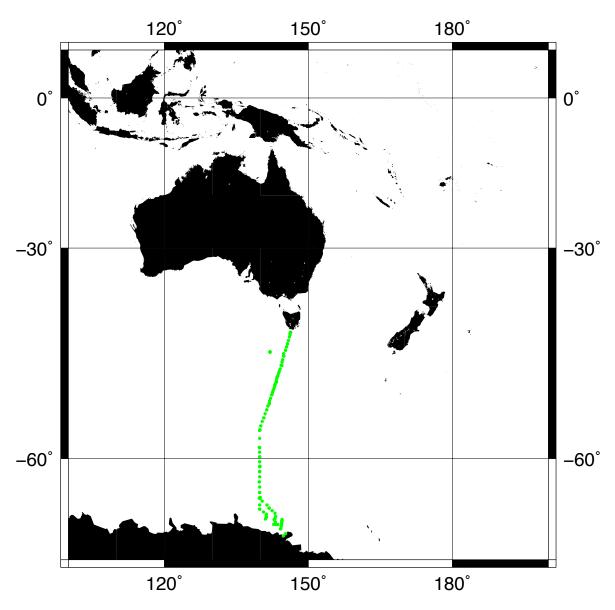

## CRUISE REPORT: SR03\_2001

(Updated SEP 2007)



## A. Highlights

#### A.1. Cruise Summary Information


| Section designation               | SR03_2001                 |
|-----------------------------------|---------------------------|
| Expedition Designation (ExpoCode) | 09AR20011029              |
| Chief scientist                   | Steve Rintoul/CSIRO       |
| Dates                             | 29 OCT 2001 - 13 DEC 2001 |
| Ship                              | RSV Aurora Australis      |
| Port of call                      | Hobart, Australia         |
|                                   | 44°0.16′S                 |
| Geographic boundaries             | 139°47.71′E 146°21.01′E   |
|                                   | 67°9.42′S                 |
| Stations                          | 135                       |
| Floats and drifters deployed      | 0                         |
| Moorings deployed or recovered    | 2 serviced, 1 deployed    |

#### **Steve Rintoul**

CSIRO Marine and Atmospheric Research Castray Esplanade Hobart, Tasmania, 7000, Australia email: steve.rintoul@csiro.au Links to text locations. Shaded sections are not relevant to this cruise or were not available when this report was compiled

| Cruise Summary Information               | Hydrographic Measurements   |  |  |  |  |  |  |  |
|------------------------------------------|-----------------------------|--|--|--|--|--|--|--|
| Description of Scientific Program        | CTD Data:                   |  |  |  |  |  |  |  |
| Geographic Boundaries                    | Acquisition                 |  |  |  |  |  |  |  |
| Cruise Track (Figure): PI CCHDO          | Processing                  |  |  |  |  |  |  |  |
| Description of Stations                  | Calibration                 |  |  |  |  |  |  |  |
| Description of Parameters Sampled        | Salinities / Temperature    |  |  |  |  |  |  |  |
| Bottle Depth Distributions (Figure)      | Oxygens / Pressure          |  |  |  |  |  |  |  |
| Floats and Drifters Deployed             | Bottle Data                 |  |  |  |  |  |  |  |
| Moorings Deployed or Recovered           | Oxygen Salinity             |  |  |  |  |  |  |  |
|                                          | Nutrients                   |  |  |  |  |  |  |  |
| Principal Investigators                  | Carbon System Parameters    |  |  |  |  |  |  |  |
| Cruise Participants                      | Helium / Tritium            |  |  |  |  |  |  |  |
| -                                        | Radiocarbon                 |  |  |  |  |  |  |  |
| Problems and Goals Not Achieved          | CFCs                        |  |  |  |  |  |  |  |
| Other Incidents of Note                  |                             |  |  |  |  |  |  |  |
| Hadamaa Data Information                 | Defenses Adversaried manage |  |  |  |  |  |  |  |
| Underway Data Information                | References Acknowledgments  |  |  |  |  |  |  |  |
| Navigation Bathymetry                    |                             |  |  |  |  |  |  |  |
| Acoustic Doppler Current Profiler (ADCP) |                             |  |  |  |  |  |  |  |
| Thermosalinograph                        |                             |  |  |  |  |  |  |  |
| XBT and/or XCTD                          |                             |  |  |  |  |  |  |  |
| Meteorological Observations              |                             |  |  |  |  |  |  |  |
| Atmospheric Chemistry Data               |                             |  |  |  |  |  |  |  |
|                                          |                             |  |  |  |  |  |  |  |
| Data Processing Notes                    |                             |  |  |  |  |  |  |  |

# Station Locations • SR03\_2001 • Rintoul • RSV Aurora Australis



(Produced from .sum file by CCHDO)

# Aurora Australis Marine Science Cruise AU0103, CLIVAR-SR3 Transect:

Oceanographic Field Measurements and Analysis

Antarctic Climate & Ecosystems
Cooperative Research Centre
Technical Report No. 4

#### **Mark Rosenberg**

Antarctic Climate & Ecosystems CRC Private Bag 80 Hobart, Tasmania, 7005, Australia email: mark.rosenberg@utas.edu.au

#### **Steve Rintoul**

CSIRO Marine and Atmospheric Research Castray Esplanade Hobart, Tasmania, 7000, Australia email: steve.rintoul@csiro.au

#### **Stephen Bray**

Antarctic Climate & Ecosystems CRC Private Bag 80 Hobart, Tasmania, 7005, Australia email: s.bray@utas.edu.au

#### **Clodagh Moy**

Antarctic Climate & Ecosystems CRC Private Bag 80 Hobart, Tasmania, 7005, Australia email: clodagh.moy@utas.edu.au

#### **Neale Johnston**

CSIRO Marine and Atmospheric Research Underwood Ave Floreat, Western Australia, 6014, Australia email: neale.johnston@csiro.au

© Cooperative Research Centre for Antarctic Climate & Ecosystems 2006

ISSN: 1833-2404 ISBN: 1-921197-02-1 November 2006

Published by the Antarctic Climate & Ecosystems Cooperative Research Centre,

Hobart, Tasmania, Australia, 76 pp.

# Aurora Australis Marine Science Cruise AU0103, CLIVAR-SR3 Transect: Oceanographic Field Measurements and Analysis

### Contents

| Abs | tract | :1                                           |
|-----|-------|----------------------------------------------|
| 1   | Intro | oduction1                                    |
| 2   | Cruis | se itinerary and summary2                    |
| 3   | Prob  | olems encountered4                           |
| 4   | Field | d data collection methods5                   |
| 4.  | .1    | CTD instrumentation5                         |
| 4.  | .2    | Niskin bottle sampling5                      |
| 4.  | .3    | CTD instrument and data calibration5         |
| 4.  | .4    | ADCP6                                        |
| 4.  | .5    | Underway measurements6                       |
| 5   | CTD   | and bottle data results7                     |
| 5.  | .1    | CTD data7                                    |
|     | 5.1.  | 1 Conductivity/salinity and temperature7     |
|     | 5.1.2 | 2 Pressure9                                  |
|     | 5.1.3 | 3 Dissolved oxygen9                          |
|     | 5.1.4 |                                              |
|     | 5.1.5 | 5 Conductivity signal noise                  |
|     | .2    | Niskin bottle data10                         |
|     |       | IX 1 Hydrochemistry cruise laboratory report |
| A1. | 1 S   | Salinity                                     |
| A1. | 2 D   | Dissolved oxygen39                           |
| A1. | 3 N   | Nutrients39                                  |
| A1. | 4 G   | General data handling40                      |
| A1. | 5 L   | aboratories40                                |
| A1. | 6 T   | emperature monitoring and control41          |
| A1. | 7 P   | Purified water41                             |
| A1. | 8 A   | Additional samples analysed41                |

|        |       | 2 Data file types and formats<br>42                      |
|--------|-------|----------------------------------------------------------|
| A2.1   | CTD   | data42                                                   |
| A2.2   | Nisk  | in bottle data43                                         |
| A2.3   | Stati | ion information43                                        |
| A2.4   | Matl  | ab format43                                              |
| A2.5   | WOO   | CE data format44                                         |
| A2.5   | .1    | CTD 2 dbar-averaged data files44                         |
| A2.5   | .2    | Bottle data files                                        |
| A2.5   | .3    | Conversion of units for dissolved oxygen and nutrients45 |
| A2     | .5.3. | 1 Dissolved oxygen45                                     |
| A2     | .5.3. | 2 Nutrients46                                            |
| A2.5   | 5.4   | Station information file46                               |
| A2.6   | ADC   | P data48                                                 |
| A2.7   | Unde  | erway data48                                             |
|        | CFC   |                                                          |
| A3.1   | CFC   | sampling procedures and data processing49                |
| A3.2   | Anal  | ytical problems50                                        |
|        |       | 4                                                        |
|        |       | Inter-cruise comparisons51                               |
| A4.1   |       | oduction                                                 |
| A4.2   |       | nity                                                     |
| A4.3   |       | in bottle data                                           |
| A4.3   |       | Dissolved oxygen                                         |
| _      |       | Phosphate                                                |
| A4.3   |       | Nitrate+nitrite                                          |
| A4.3   |       | Silicate                                                 |
|        |       |                                                          |
|        |       | jements                                                  |
| ACKIIO | wieug | CIIICIIG/2                                               |

# Tables

| Table 1: Summary of cruise itinerary2                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: Summary of station information for cruise AU0103                                                                                                  |
| Table 3: Summary of samples drawn from Niskin bottles at each station17                                                                                    |
| Table 4: Summary of mooring recovery and deployment information21                                                                                          |
| Table 5: Principal investigators (*=cruise participant) for CTD water sampling programs21                                                                  |
| Table 6: Scientific personnel (cruise participants) for cruise AU010321                                                                                    |
| Table 7: Calibration coefficients and calibration dates for CTD serial numbers 1193 and 1103 (unit numbers 5 and 7 respectively) used during cruise AU0103 |
| Table 8: Surface pressure offsets                                                                                                                          |
| Table 9: CTD conductivity calibration coefficients                                                                                                         |
| Table 10: Station-dependent-corrected conductivity slope term ( $F_2 + F_3$ . N)                                                                           |
| Table 11: CTD raw data scans deleted during data processing                                                                                                |
| Table 12: Missing data points in 2 dbar-averaged files                                                                                                     |
| Table 13: 2 dbar averages interpolated from surrounding 2 dbar values34                                                                                    |
| Table 14: Suspect 2 dbar averages for the indicated parameters                                                                                             |
| Table 15: Questionable nutrient sample values (not deleted from bottle data file)                                                                          |
| Table 16: Digital reversing protected thermometers used: serial numbers are listed35                                                                       |
| Table 17: CTD dissolved oxygen calibration coefficients                                                                                                    |
| APPENDIX 1                                                                                                                                                 |
| Table A1.1:Summary of IAPSO Standard Seawater (ISS) batches used for salinometer standardisations during cruise AU0103                                     |
| APPENDIX 2                                                                                                                                                 |
| Table A2.1: Definition of quality flags for CTD data                                                                                                       |
| Table A2.2: Definition of quality flags for Niskin bottles (i.e. parameter BTLNBR in *.sea files).                                                         |
| Table A2.3: Definition of quality flags for water samples in *.sea files47                                                                                 |
| APPENDIX 4                                                                                                                                                 |
| Table A4.1: Stations from each cruise used for parameter comparisons                                                                                       |

# Figures

| Figure 1a and b: CTD station positions and mooring locations for cruise AU01033                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2: Hull mounted ADCP 30 minute ensemble data, for (a) all data, and (b) 'on station' (i.e. ship speed $\leq 0.35$ m/s) data                                |
| Figure 3: Apparent ADCP vertical current shear, calculated from uncorrected (i.e. ship speed included) ADCP velocities                                            |
| Figure 4a and b: Comparison between (a) CTD and underway temperature data, and (b) CTD and underway salinity data, including bestfit lines                        |
| Figure 5: Conductivity ratio $c_{btl}/c_{cal}$ versus station number for cruise AU010324                                                                          |
| Figure 6: Salinity residual ( $s_{btl}$ - $s_{cal}$ ) versus station number for cruise AU010324                                                                   |
| Figure 7a and b: Salinity residual versus (a) pressure, and (b) temperature, for stations 71 to 97                                                                |
| Figure 7c and d: Salinity residual versus (c) pressure, and (d) temperature, for stations 114 t                                                                   |
| Figure 8a and b: Comparison between digital reversing thermometers and CTD platinum temperature for cruise AU0103                                                 |
| Figure 9: Dissolved oxygen residual ( $o_{btl}$ - $o_{cal}$ ) versus station number for cruise AU010328                                                           |
| Figure 10: Nitrate+nitrite versus phosphate data for AU0103                                                                                                       |
| Figure 11: Conductivity and temperature signal noise for CTDs 1193 and 110329                                                                                     |
| APPENDIX 4                                                                                                                                                        |
| Figure A4.1a: Meridional section of neutral density for cruise au0103 along SR3 transect, including CTD station positions                                         |
| Figure A4.1b: Meridional section of neutral density for cruise au9601 along SR3 transect, including CTD station positions                                         |
| Figure A4.1c: Meridional section of neutral density for cruise au9404 along SR3 transect, including CTD station positions                                         |
| Figure A4.2: CTD salinity differences at the deep salinity maximum, along the SR3 transect. Differences shown for au0103-au9601, au0103-au9404, and au9601-au9404 |
| Figure A4.3a: au0103-au9601 bottle oxygen differences on neutral density surfaces 59                                                                              |
| Figure A4.3b: au0103-au9404 bottle oxygen differences on neutral density surfaces60                                                                               |
| Figure A4.3c: au9601-au9404 bottle oxygen differences on neutral density surfaces 61                                                                              |
| Figure A4.4a: au0103-au9601 phosphate differences on neutral density surfaces62                                                                                   |
| Figure A4 4h: au0103-au9404 phosphate differences on neutral density surfaces 63                                                                                  |

| Figure A4.4c: au9601-au9404 phosphate differences on neutral density surfaces64                  |
|--------------------------------------------------------------------------------------------------|
| Figure A4.5a: $au0103$ - $au9601$ nitrate $+$ nitrite differences on neutral density surfaces 65 |
| Figure A4.5b: $au0103$ - $au9404$ nitrate+nitrite differences on neutral density surfaces 66     |
| Figure A4.5c: au9601-au9404 nitrate+nitrite differences on neutral density surfaces67            |
| Figure A4.6a: au0103-au9601 silicate differences on neutral density surfaces68                   |
| Figure A4.6b: au0103-au9404 silicate differences on neutral density surfaces69                   |
| Figure A4.6c: au9601-au9404 silicate differences on neutral density surfaces70                   |

#### **Abstract**

Oceanographic measurements were conducted along CLIVAR Southern Ocean meridional repeat transect SR3 between Tasmania and Antarctica from October to December 2001. A total of 135 CTD vertical profile stations were taken, more than half to within 20 m of the bottom. Over 2200 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients, CFCs, CCl<sub>4</sub>, dissolved inorganic carbon, alkalinity, DMS/DMSP/DMSO, halocarbons, barium, barite, ammonia,  $\delta^{30}$ Si, dissolved and particulate organic carbon, particulate silica, <sup>15</sup>N-nitrate, <sup>18</sup>O, <sup>234</sup>Th, <sup>230</sup>Th, <sup>231</sup>Pa, primary productivity and biological parameters, using a 24 bottle rosette sampler. Near surface current data were collected using a ship mounted ADCP. Two sediment trap moorings were serviced, and a third mooring was deployed at a new location. A summary of all CTD data and data quality is presented in this report.

#### 1 Introduction

Marine science cruise AU0103 was conducted aboard the *RSV Aurora Australis* from October to December 2001. The major constituent of the cruise was the seventh complete occupation of the CLIVAR SR3 section south of Tasmania (Figure 1a), and the first full occupation during the southern spring. Springtime measurements had previously been made during the 1991 occupation of SR3, though not to the full station density (Rintoul and Bullister, 1999). Previous completions of the transect are summarised in Rosenberg et al. (1997).

The primary scientific objectives of the CLIVAR SR3 occupation were:

- 1. to measure changes in water mass properties and inventories throughout the full ocean depth between Tasmania and Antarctica;
- 2. to estimate the transport of mass, heat and other properties south of Australia, and to compare the results to previous occupations of the WOCE SR3 line;
- 3. to identify mechanisms responsible for variability in ocean climate south of Australia;
- 4. to observe the physical and biological properties of the upper ocean during the period of the spring bloom;
- 5. to use repeat measurements to assess the skill of ocean and coupled models.

Additional CTD profiles were taken at nine 'particle station' sites to support the biogeochemical work. Three high resolution mini sections were also completed across the Antarctic Slope Front, with an additional line of CTDs taken across a bathymetric exit trough at the northwest end of the Mertz Depression (Figure 1b). Note that intensive CTD and mooring measurements in this southern shelf region were made previously during the Mertz Polynya Experiment (Rosenberg et al., 2001). Two sediment trap moorings were serviced during the cruise, and a third sediment trap mooring was deployed at a new location (Figure 1b, Table 4).

This report describes the CTD, Niskin bottle, hull mounted ADCP and underway data and data quality for this cruise. All information required for use of the data set is presented in tabular and graphical form. Publications using the cruise data set include Aoki et al.(2005a), Aoki et

al. (2005b), Cardinal et al. (2005a), Cardinal et al. (2005b), Jacquet et al. (2004) and Jacquet et al. (2005).

#### 2 Cruise itinerary and summary

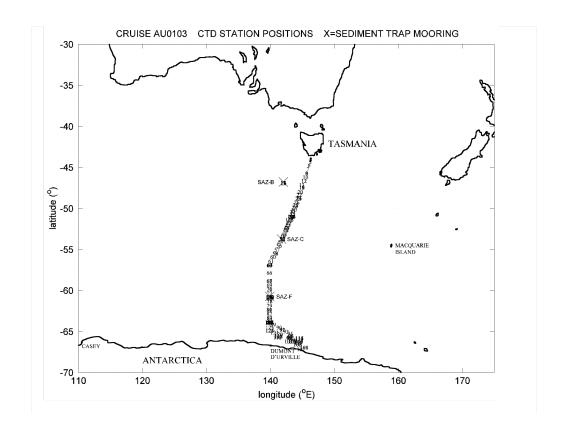
The ship departed Hobart on October 29th 2001, and a test CTD was done (station 1) in 1000 m of water. The SR3 transect then commenced, and 12 CTDs were completed. Note that throughout the SR3 line, double dips were taken at approximately every second or third location, not counting particle stations (Table 2). The double dipping involved taking both a shallow cast to 350 m and a full depth cast (in either order), to gain more vertical resolution for Niskin bottle samples in the upper profile.

After CTD station 13 the ship moved to the west of the transect line and the first particle station was occupied at ~142°E. Four CTDs were taken, and the sediment trap mooring SAZ-B (Figure 1a) was recovered then redeployed (complete details are described in the unpublished cruise mooring report). The SR3 transect was then resumed, continuing southward towards the Antarctic shelf. En route along the transect, a further 7 particle stations were occupied (Table 2), the sediment trap mooring at SAZ-C was recovered then redeployed, a new sediment trap mooring was deployed at SAZ-F (Figure 1a), a high resolution mini transect was taken across the slope front (station 95 to 99), and a mini transect was taken across the exit trough at the northwest end of the Mertz Depression (station 101 to 104). Station 107 and 108 were taken next to the Mertz Glacier, the first in Buchanan Bay and the second to the northeast. Iceshelf water was measured, with temperatures as low as -2.04°C. Unfortunately conductivity measurements were bad for both these casts, due to instrument hardware failure. Two more mini sections were taken upstream and downstream of the exit trough (Table 2, Figure 1b), and the ninth particle station was occupied over the slope at 2500 m depth.

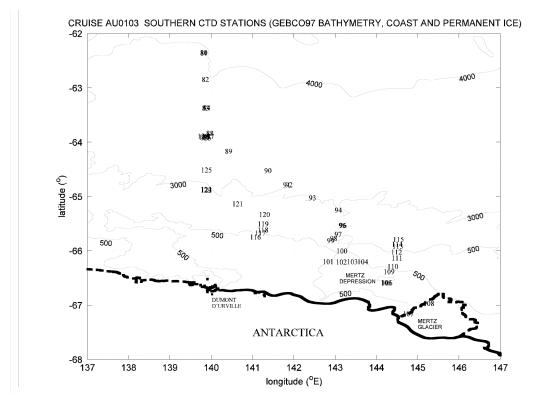
Conditions on the way south were remarkably ice free, and on the return northward the ship detoured specifically to seek out pack ice suitable for study. Continuing on the transit north back to Hobart, 3 of the particle stations were reoccupied (Table 2).

CTD station details are summarised in Table 2, while Table 3 summarises the major Niskin bottle sampling for each station. Mooring deployment and recovery details are summarised in Table 4. Principal investigators for CTD and water sampling measurements are listed in Table 5, while cruise participants are listed in Table 6.

**Table 1:** Summary of cruise itinerary


Expedition Designation AU0103, voyage 3 2001/2002 (cruise acronym CLIVAR)

Cruise Determining Program CLIVAR SR3 section
Chief Scientist Steve Rintoul (CSIRO)
Ship RSV Aurora Australis


Ports of Call Hobart

Cruise Dates October 29th to December 13th, 2001

(a)



(b)



**Figure 1a and b:** CTD station positions and mooring locations for cruise AU0103.

#### 3 Problems encountered

- During the test cast at station 1, the top few metres of seacable frayed badly and a retermination was required. A further electric retermination was required after station 6 as water was entering the cable join.
- Significant data noise was observed for the first 8 casts, and the problem was eventually traced to the CTD deck unit. The unit was replaced for station 9 onwards.
- The fluorometer was powered from a separate battery pack for CTD casts up to station 108. Electrical shorts to seawater flattened the batteries during stations 6 and 8.
- Near the bottom of the cast at station 13, the CTD winch was unable to haul and the package ended up sitting on the bottom for ~30 minutes in 4800 m of water. When finally retrieved, there was surprisingly little damage to the instruments beyond a mud-filled conductivity cell. It was decided that the winch drum was overfilled with wire, and after station 15 1000 m of wire were removed from the drum. At station 16, trouble was again experienced below 4000 m when attempting to haul the package. After the cast the pressure in the winch hydraulics was raised from 22 to 26 bar, which appeared to fix the problem, and there were no further hauling problems for the remainder of the cruise.
- During station 30, the ship lost head repeatedly in the heavy swell, and the cast was finally abandoned at 3200 dbar, with bottles tripped on the fly during retrieval. During the cast, the CTD room shipped lots of water and a set of sample containers and filter rigs were swept out the CTD door.
- The stern gantry failed during work from the stern at the time of CTD station 38 the rack
  and pinion drive system could not be repaired at sea. The 2 gilsson winches were rigged
  via a series of blocks for pulling the gantry in and out. With this configuration, the gantry
  was usable for trawl deck operations on the remainder of the cruise, however 4 crew were
  required to drive the system.
- For Niskin bottle 19, a loose lanyard prior to station 60 allowed the bottom end cap to pretrip on many occasions. As a result, Niskin bottle samples from bottle 19 were bad for many stations prior to station 60 (details given in section 5.2).
- Near the start of the cast at station 66, a single wire strand broke on the CTD wire, bunching up and jamming in the sheaf as recovery was attempted. Retermination was required.
- The aft CTD winch drum was used for 'in situ pump' casts (P.I. Tom Trull). When at the bottom of the pump cast after CTD station 88, with 3500 m of wire out, a single strand broke on the wire. During the recovery, ~150 m of this broken strand had to be cut away as it bunched up at the sheaf.
- The conductivity hardware on CTD serial 1193 failed during station 107. Replacement CTD serial 1103 was installed for station 109 onwards.

#### 4 Field data collection methods

#### 4.1 CTD instrumentation

General Oceanics Mark IIIC CTDs including dissolved oxygen sensor were used for the entire cruise, mounted on a 24 bottle rosette frame, together with a G.O. model 1015 24-position pylon. CTD serial 1193 was used for stations 1 to 108, and CTD serial 1103 was used for remaining stations. 10-litre Niskin bottles were used for sample collection. All bottles were G.O., with the exception of 3 NOAA bottles; one of the NOAA bottles was constructed of titanium, for low CFC blank levels. All Niskins were fitted with pre-baked neoprene o-rings and stainless steel springs (no teflon coating), again to lower CFC blank levels. A Benthos altimeter serial 142 was fitted for bottom location, and digital deep sea reversing thermometers (SIS model RTM4002X) were mounted on 3 bottles for checks of CTD temperature calibration (Table 16).

A Sea Tech fluorometer, borrowed from CSIRO and rated to 6000 m, was fitted to the rosette frame for most stations up to station 108 (Table 3). This instrument was powered from a separate battery pack, also fitted to the frame. After station 108, the Antarctic Division Sea Tech fluorometer (rated to only 3000 m) was used.

A Chelsea Instruments transmissometer, borrowed from CSIRO, was fitted to the frame for most stations up to station 52. The instrument was powered from the fluorometer battery pack, and data were fed through the licor channel. No good transmittance data were obtained in this configuration. Good data were however obtained after fitting the transmissometer to the CSIRO Seacat, deployed separately from the stern (B. Griffiths, pers. comm.).

A CSIRO copper ion selective electrode was fitted to the frame for station 76, with data fed through the fluorometer channel (P.I. Denis Mackey, CSIRO).

#### 4.2 Niskin bottle sampling

Niskin bottles were sampled for numerous chemical and biological parameters throughout the cruise. Table 3 provides a summary of the main parameters sampled at each CTD station. Repeat shallow casts were taken at every second or third location on the main SR3 transect, both to increase vertical resolution for studies focusing on the upper water column, and to provide sufficient water volume for all the samples required. Several repeat casts were taken at particle station sites, with cast depths varying according to the needs of the samples required. In general, the core CTD parameters of salinity, dissolved oxygen and nutrients (orthophosphate, total nitrate+nitrite and reactive silicate) were sampled at every SR3 location. A strict order was followed for drawing of samples from Niskin bottles, with CFC, DMS/DMSP, dissolved organic carbon, halocarbons and dissolved oxygen coming first, and biological parameters generally coming later in the order.

#### 4.3 CTD instrument and data calibration

Pre-cruise pressure, platinum temperature and pressure temperature calibrations (October 2001) were performed at the CSIRO Division of Marine Research calibration facility (Table 7). A full multi point laboratory temperature calibration was performed for the platinum temperature sensors, with points between the triple point of water and the melting point of

gallium, and also including several subzero points down to  $\sim$ -1.4°C. A quadratic fit to the sensor calibration data was used for CTD1193 (stations 1-108); a linear fit was used for CTD1103 (stations 109-135). Calibration of the fluorometer channel for CTD1193 was done on the ship (Table 7), giving data output in volts; the same calibration was applied to fluorescence data for CTD1103. Chlorophyll-a concentration data are required to scale these voltages to fluorescence units.

Complete CTD conductivity and dissolved oxygen calibration results, derived from *in situ* Niskin bottle samples, are listed later in this report. Hydrochemistry laboratory methods are discussed in Appendix 1. Full details of CTD data processing and calibration techniques can be found in Appendix 2 of Rosenberg et al. (1995), with the following update to the methodology: the 10 seconds of CTD data prior to each bottle firing are averaged to form the CTD upcast burst data for use in calibration.

#### 4.4 ADCP

The hull mounted ADCP on the *Aurora Australis* is described in Rosenberg (unpublished report, 1999). Logging and calibration parameters are summarised as follows:

ping parameters bottom track ping parameters

no. of bins: 60 no. of bins: 128 bin length: 8 m bin length: 4 m pulse length: 8 m pulse length: 32 m

delay: 4 m

ping interval: minimum ping interval: same as profiling pings

reference layer averaging: bins 8 to 20

XROT: 822

ensemble averaging duration: 3 min. (for logged data);

30 min. (for final processed data)

calibration

 $\alpha$  (± standard deviation) 1+ $\beta$  (± standard deviation) no. of calibration sites 2.460 ± 0.575 1.0691 ± 0.011 124

Current vectors are plotted in Figure 2; the apparent vertical current shear error for different ship speed classes, discussed in Rosenberg (unpublished report, 1999), is plotted in Figure 3.

#### 4.5 Underway measurements

Underway data, including meteorological data, bathymetry, GPS and sea surface temperature/salinity/fluorescence, were logged to an Oracle database on the ship. All data were quality controlled by the dotzapper. For bathymetry data, a sound speed of 1463 ms<sup>-1</sup> was used for ocean depth calculation, and the ship's draught of 7.3 m was accounted for. For more information, see the AADC (Antarctic Division Data Centre) website, and the cruise dotzapper report:

Marine Science Support Data Quality Report, *RSV Aurora Australis* Season 2001-2002 Voyage 3 (CLIVAR), Ruth Lawless, Antarctic Division unpublished report (at web address http://aadcmaps.aad.gov.au/metadata/mar\_sci/Dz200102030.html).

Underway data were dumped from the AADC website and are in the following files:

1 min. instantaneous values, text format: clivar\_underway.ora
1 min. instantaneous values, matlab format: clivar\_underway.mat

A correction was applied to the underway sea surface temperature and salinity data, derived by comparing the underway data with CTD temperature and salinity data at 8 dbar (Figure 4). The following corrections were applied:

| $T = 0.9943 T_{dls}$ | - | 0.2361 | (eqn 1) |
|----------------------|---|--------|---------|
| $S = 0.9873 S_{dls}$ | + | 0.4680 | (eqn 2) |

for corrected underway temperature and salinity T and S respectively, and uncorrected values  $T_{dls}$  and  $S_{dls}$ . Note that in the final data set, a few underway sea surface salinity values near the start and end of the cruise appear to be suspiciously low.

#### 5 CTD and bottle data results

CTD and Niskin bottle data quality are discussed in this section. Full details of the CTD data processing and calibration techniques are described in Rosenberg et al. (1995). Data file formats are described in Appendix 2, and historical data comparisons are made in Appendix 4. When using the data, the following data quality tables are important: Table 14 (questionable CTD data) and Table 15 (questionable nutrient data).

This was the second last cruise on the *Aurora Australis* where General Oceanics CTDs were still used. In late 2002, a year after the cruise, the CTD system on the ship was switched over to SeaBird 911plus instruments, with an accompanying improvement in data quality, in particular for CTD dissolved oxygen data.

#### 5.1 CTD data

#### 5.1.1 Conductivity/salinity and temperature

The conductivity calibration and equivalent salinity results for the entire cruise are plotted in Figures 5 and 6, and the derived conductivity calibration coefficients are listed in Tables 9 and 10. CTD temperature and reversing thermometer data are compared in Figures 8a and b.

CTD1193 was used for stations 1 to 108. The conductivity cell used for stations 1 to 12 performed very well, with CTD salinities accurate to less than 0.002 (PSS78). The cell was damaged during station 13 when the package hit the bottom, and a different cell was fitted for stations 14 to 108. This second conductivity cell performed well for stations 14 to 29. For stations 30 to 70, a very small biasing towards a positive  $\Delta S$  (where  $\Delta S$  = bottle salinity – calibrated CTD salinity) is evident deeper in the water column. This biasing, mostly of the order 0.001 (PSS78), is well within the 0.002 (PSS78) salinity accuracy and therefore no correction has been made to the data.

For stations 71 to 97, the positive biasing error in  $\Delta S$  becomes significant (Figure 7a). The positive group of  $\Delta S$  values to the lower right of Figure 7a represents data from the bottom end of CTD profiles. The depth of these values decreases southward as the bathymetry shoals, thus the biasing is not simply a pressure dependent error. The biasing does however appear simultaneously with the appearance of a locally colder fresher 'tail' of water at the bottom of each profile. The local vertical salinity gradients are steeper in these tails, and as the centre of the Niskin bottles on the rosette frame are ~0.5 m above the CTD sensors, the negative sign (i.e. freshening with depth) of the gradients would be expected to cause a small positive biasing in  $\Delta S$ . Closer examination reveals that the positive  $\Delta S$  values do not always correspond exactly with these local fresher tails of water, and indeed the gradients in these tails are not strong enough to account for the magnitude of the error of up to ~0.004 (PSS78) - thus these local features are only considered a minor component of the error. The major cause of the error appears to be temperature related. There is a close correspondence between the salinity residuals and subzero water temperatures at depth (Figure 7b). From the figure, there is a broad scatter in ∆S values for shallow samples (≤250 dbar in Figure 7b), however for deeper samples  $\Delta S$  values are clearly positive for temperatures below 0°C.

For stations 98 to 106, the conductivity calibration results are good, and no consistent biasing in  $\Delta S$  is evident. The conductivity cell malfunctioned for stations 107 and 108, and no CTD conductivity/salinity data are available for these two stations.

CTD1103 was used for station 109 and onwards, after failure of the conductivity hardware on CTD1193. For stations 109 to 113 and stations 126 to 135 the conductivity cell calibrated well, with CTD salinities accurate to within 0.002 (PSS78). For stations 114 to 125, a CTD salinity error similar to stations 71 to 97 (CTD1193) is evident from the positive  $\Delta S$  values at depth (Figures 7c and d). There appears to be a small sensor calibration error for both CTD1103 and CTD1193 in subzero water at depth. From the available evidence it is not conclusive whether the source of the error is the temperature sensor calibrations, the conductivity cell responses, or both. Both CTDs show similar behaviour, and as there is a strong possibility that the temperature calibrations are a probable source of error, the following caution is given for both the temperature and salinity data. For stations 71 to 97 and 114 to 125 in subzero waters at depth (i.e. at the bottom end of the full depth profiles), at the local salinity and pressure values there is a possible error of the order +0.003°C (i.e. temperature a little high) for CTD temperature, and a CTD salinity error of the order -0.003 (PSS78) (i.e. salinity a little low). More specifically, the salinity error is in the range -0.001 to -0.004 (PSS78), with the larger error for lower negative temperatures. No correction has been made for these errors.

For many stations the salinity data are suspect for the top 2 bins (2 and 4 dbar), due to transient errors when the instrument first enters the water. As a general caution, salinity data down to 4 dbar should be treated as suspect.

As described in section 4.3, a multi point laboratory temperature calibration was performed prior to the cruise. Both linear and quadratic fits were attempted for the temperature calibration data for both CTDs, to obtain the best fit results. For CTD1193 (stations 1 to 108), a quadratic fit to the calibration data gave the best results over the entire temperature range (Table 7). For CTD1103 (stations 109 to 135), temperatures measured during these stations

were mostly below ~2.3°C, with higher values up to only ~7.5°C encountered during stations 133 to 135. For this lower end of the temperature range, the best result from the laboratory temperature calibration came from a linear fit to the calibration data (Table 7).

CTD platinum temperature data are compared with digital reversing thermometer data in Figures 8a and b. The offsets in results for the different thermometers are due to calibration offsets between the thermometers. At positive temperatures, CTD temperature sensor performance appears to be fairly stable throughout the cruise, and data for the two CTDs appear to be consistent. At temperatures below 0°C there is a clear decrease in  $\Delta T$  (i.e. thermometer – CTD temperature) with decreasing temperature (Figure 8b). This same pattern is evident for both CTDs. From the comparison to the thermometer data alone, it is not clear whether the source of the error is the CTD temperature calibrations or the thermometer calibrations. Changing response of Neil Brown platinum temperature sensors below 0°C is often reported (SCRIPPS Institution of Oceanography Calibration Facility, CSIRO Calibration Facility, pers. comms). It is therefore likely that there is at least some small calibration error in the CTD temperature data in subzero water, as discussed previously in this section.

#### 5.1.2 Pressure

As described in previous data reports, noise in the pressure signal for CTD1193 (used for stations 1 to 108) was high, with spikes of up to 1 dbar amplitude occurring. When forming pressure monotonic data prior to 2 dbar averaging, these spikes cause low data point attendance for a significant number of 2 dbar pressure bins, resulting in missing bins in the 2 dbar averaged data. To reduce the number of missing bins, the minimum number of data points required in a 2 dbar bin to form a 2 dbar average was set to 8. To recover another  $\sim$ 20 missing bins from various stations, this minimum threshold value was reduced to 5. For most remaining missing bins, values were linearly interpolated between surrounding bins (Table 13), except where the local temperature gradient was too high. Further missing 2 dbar bins (Table 12) are due to quality control of the data.

For CTD1103 (stations 109 to 135) any noise in the pressure signal was very low, and the minimum number of data points required in a 2 dbar bin to form a 2 dbar average was set to 10.

For stations 24, 29, 62, 82 and 87, the surface pressure offset was obtained by manual inspection of the data. For stations 107 and 108, hypersaline water was placed in the sensor cover prior to commencement of logging to try to prevent sensor freezing during deployment; the surface pressure offset for these two stations was also obtained by manual inspection of the data. For station 100, logging commenced when the CTD was already in the water at  $\sim$ 4 dbar, and the surface pressure offset was estimated from values from surrounding stations. Surface pressure offset values applied to pressure data for each station are listed in Table 8.

#### 5.1.3 Dissolved oxygen

CTD dissolved oxygen calibration results are shown in Figure 9, and the derived calibration coefficients are listed in Table 17. A new oxygen sensor was fitted to CTD1193 at the start of the cruise, and the same oxygen sensor was fitted to CTD1103 for station 109 onwards.

For the bulk of the water column the CTD dissolved oxygen data are good, and the standard deviation values for the CTD to bottle comparison are within 1% of full scale values (where full

scale is approximately 380  $\mu$ mol/l for data between 35 and 1000 dbar, and ~270  $\mu$ mol/l for data below 1000 dbar). Much of the near surface part of the oxygen profiles is highly suspicious, in particular for the top 20 dbar, and often down to 30 dbar. In general, transient errors are common when CTD dissolved oxygen sensors (on General Oceanics CTDs) enter the water, and near surface oxygen data should be treated with caution.

#### 5.1.4 Fluorescence and transmittance

All fluorescence data only have preliminary calibrations applied, to convert sensor output into voltages. These data should not be used quantitatively other than for linkage with primary productivity data. Note that fluorescence data for stations 7, 8 and 9 are suspect due to a flattening battery pack.

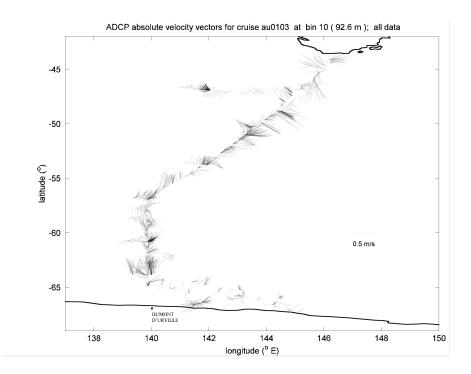
The transmissometer was fitted to the main CTD frame for most stations up to station 52, however all data are suspect. Good transmittance data were obtained after fitting the transmissometer to the CSIRO Seacat, deployed from the stern gantry - these data are not included here.

#### 5.1.5 Conductivity signal noise

Close examination of the conductivity cell signal from General Oceanics CTDs reveals a signal noise large enough to generate spurious small scale vertical density inversions (Rosenberg et al., 1997, Tom Whitworth, pers. comm.). From previous cruises, CTD 1103 was found to generate the noisiest conductivity data. For this cruise, a comparison of conductivity signal noise was made between the two CTDs used, 1193 and 1103. Firstly, the full 25 Hz CTD data were extracted for a series of stations from approximately equivalent latitudes for both CTD 1193 and 1103. Steep parts of the vertical profile (i.e. near the top and bottom) were excluded. Data were then smoothed using a running mean average with a window size of  $\pm 5$  data points. Lastly, variances were calculated for both the conductivity and temperature data. For the stations analysed in this way, there is no obvious difference in conductivity noise levels between the two CTDs (Figure 11) - for this cruise, evidently both CTDs are equally likely to give spurious vertical density inversions.

#### 5.2 Niskin bottle data

A Guildline 'Autosal' salinometer serial no. 62549 was used for analysis of all salinity bottle samples. International Standard Seawater batch numbers used are detailed in Appendix 1 (Table A1.1).


For Niskin bottle 19, a loose lanyard prior to station 60 allowed the bottom end cap to pre-trip on many occasions. As a result, Niskin bottle samples from bottle 19 were bad for all parameters for the following stations: 9, 19, 21, 23-27, 29, 30, 41-43, 45, 46, 48, 50-53, 56, 57, 59.

For stations 66 to 75, oxygen reagent 1 was accidentally topped up with Milli-Q instead of reagent 1, and oxygen bottle samples were pickled with this dilute reagent. These samples were analysed using a standardisation done with this same dilute reagent. Examination of the bottle oxygen concentrations and standardisation revealed no suspicious data - reagent volumes added to samples are in excess, thus the dilution of reagent 1 appears to have been within tolerance.

For station 43, faulty rosette pylon behaviour resulted in all rosette positions out of synch. by 1 position, with bottle 24 tripped at the deepest position. For station 94, the pylon was accidentally set to position 1 prior to the cast, thus bottle 2 was tripped at the deepest position, and bottle 1 at the shallowest.

Nitrate+nitrite versus phosphate nutrient data are shown in Figure 10.

(a)



(b)

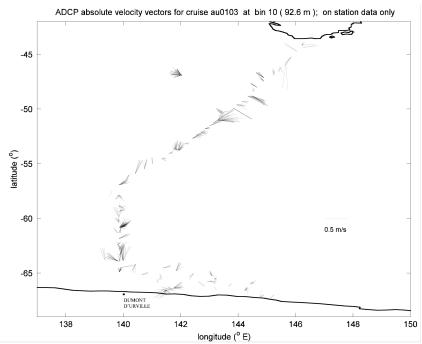
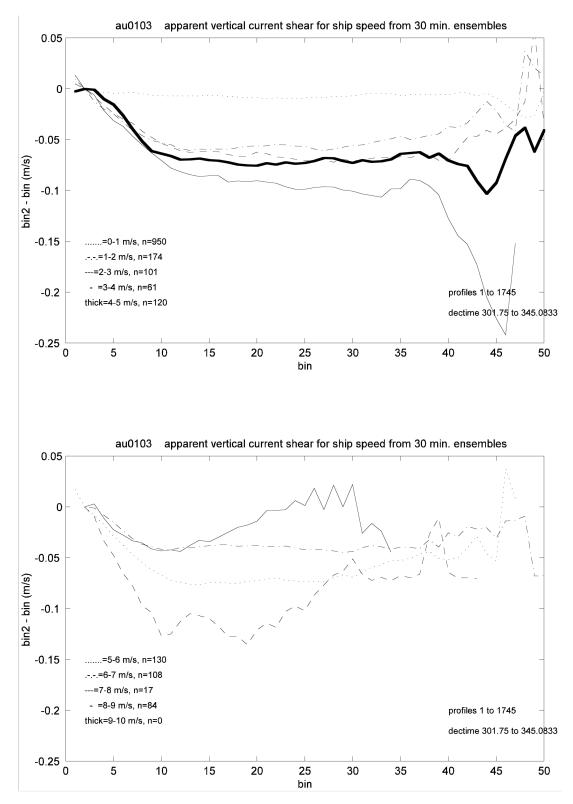




Figure 2: Hull mounted ADCP 30 minute ensemble data, for (a) all data, and (b) 'on station' (i.e. ship speed ≤ 0.35 m/s) data.



**Figure 3:** Apparent ADCP vertical current shear, calculated from uncorrected (i.e. ship speed included) ADCP velocities. The data are divided into different speed classes, according to ship speed during the 30 minute ensembles. For each speed class, the profile is an average over the entire cruise.

**Table 2:** Summary of station information for cruise AU0103. All times are UTC. In the station naming, 'particle' refers to particle station, 'downstream' refers to downstream section, 'upstream' refers to upstream section, 'exit trough' is the bathymetric feature at the northwest end of the Mertz Depression, and 'large volume' is a cast specifically to collect a large volume of water from a single depth.

|                |      |           | START     |            | -     | maxP   | BOTTOM |           |            |      |        |      | END       |            |       |  |  |
|----------------|------|-----------|-----------|------------|-------|--------|--------|-----------|------------|------|--------|------|-----------|------------|-------|--|--|
| Station number | time | date      | latitude  | longitude  | depth | (dbar) | time   | latitude  | longitude  |      | altim. | time | latitude  | longitude  | depth |  |  |
| 4 44           | 2101 | 20 OCT 01 | 44.07.100 | 146:12 145 | (m)   | ` /    | 21.40  | 44.07.200 | 146.12.005 | (m)  | (m)    | 2224 | 44.07.220 | 146.12.00  | (m)   |  |  |
| 1 test         |      |           |           | 146:13.14E |       | 1028   |        |           | 146:13.09E |      |        |      | 44:07.23S |            |       |  |  |
| 2 SR3          |      |           |           | 146:20.09E |       | 306    |        |           | 146:20.52E | 302  |        |      | 44:00.37S |            |       |  |  |
| 3 SR3          |      |           |           | 146:17.76E |       | 522    |        |           | 146:17.95E | 504  |        |      | 44:03.17S |            |       |  |  |
| 4 SR3          |      |           |           | 146:13.84E |       | 1044   |        |           | 146:14.05E |      |        |      | 44:06.64S |            |       |  |  |
| 5 SR3          |      |           |           | 146:13.54E |       | 2312   |        |           | 146:13.96E |      |        |      | 44:21.90S |            |       |  |  |
| 6 SR3          |      |           |           | 146:02.71E |       | 3246   |        |           | 146:02.43E |      |        |      | 44:42.925 |            |       |  |  |
| 7 SR3          |      |           |           | 145:51.00E |       | 2898   |        |           | 145:50.34E |      |        | _    | 45:13.14S |            |       |  |  |
| 8 SR3          | 0040 |           |           | 145:39.00E |       |        | 1      |           | 145:38.91E |      | -      |      | 45:43.06S |            |       |  |  |
| 9 SR3          | -    |           |           | 145:39.98E |       | 2876   | -      | -         | 145:40.09E |      |        |      | 45:45.44S |            |       |  |  |
| 10 SR3         |      |           |           | 145:28.44E |       | 2758   | 1      |           | 145:28.16E |      |        |      | 46:10.75S |            |       |  |  |
| 11 SR3         | 1532 |           |           | 145:15.36E |       | 3374   | -      |           | 145:15.60E |      |        |      | 46:38.95S |            |       |  |  |
| 12 SR3         | 2034 |           |           | 145:14.71E |       | 352    |        |           | 145:14.78E | 3329 | -      | _    | 46:39.61S |            |       |  |  |
| 13 SR3         | 0106 |           |           | 144:53.95E |       | 4900   | 1      |           | 144:53.76E | -    | 0.0    |      | 47:07.20S |            |       |  |  |
| 14 particle    | 0331 |           |           | 142:02.92E |       | 304    |        |           | 142:02.87E |      | -      |      | 46:54.87S |            |       |  |  |
| 15 particle    | 0829 |           |           | 141:59.42E |       | 1004   |        |           | 141:59.48E | -    | -      |      | 46:55.38S |            |       |  |  |
| 16 particle    | 2221 |           |           | 142:02.38E |       | 4012   | 1      |           | 142:02.07E |      | -      |      | 46:54.31S |            |       |  |  |
| 17 particle    | 1041 |           |           | 141:59.34E |       | 2002   |        |           | 141:58.85E |      | -      |      | 46:52.00S |            |       |  |  |
| 18 SR3         | 2258 |           |           | 144:54.04E |       | 352    |        |           | 144:53.95E |      | -      |      | 47:28.18S |            |       |  |  |
| 19 SR3         | 0102 |           |           | 144:53.83E |       |        |        |           | 144:53.41E |      |        |      | 47:26.17S |            |       |  |  |
| 20 SR3         | 0730 |           |           | 144:40.20E |       | 4404   |        |           | 144:39.21E | -    | 25.0   | _    | 48:00.06S |            |       |  |  |
| 21 SR3         | 1321 |           |           | 144:31.74E |       | 4202   |        |           | 144:31.57E | -    | 19.6   |      | 48:19.41S |            |       |  |  |
| 22 SR3         | 1827 |           |           | 144:32.82E |       | 354    |        |           | 144:32.86E | -    | -      |      | 48:19.78S |            |       |  |  |
| 23 particle    | 0029 |           |           | 144:19.75E |       | 1004   |        |           | 144:19.98E |      | -      |      | 48:47.50S |            |       |  |  |
| 24 SR3         | 0341 |           |           | 144:25.00E |       | 4168   |        |           | 144:25.95E |      | 16.2   |      | 48:47.48S |            |       |  |  |
| 25 SR3         | 0917 |           |           | 144:29.78E |       |        | 1      |           | 144:30.13E |      | -      |      | 48:47.91S |            |       |  |  |
| 26 SR3         | 1612 |           |           | 144:06.54E |       | 4358   | 1      |           | 144:07.04E |      | 14.9   |      | 49:16.14S |            |       |  |  |
| 27 SR3         | 2201 |           |           | 143:56.31E |       | 354    |        |           | 143:56.38E | 3573 | -      | _    | 49:36.71S |            |       |  |  |
| 28 SR3         | 0001 |           |           | 143:56.50E |       | 3722   |        |           | 143:57.06E |      | 19.0   |      | 49:36.41S |            |       |  |  |
| 29 SR3         | 0439 |           |           | 143:48.49E |       | 3872   |        |           | 143:49.57E | 3736 | 17.4   |      | 49:53.76S |            |       |  |  |
| 30 SR3         | 0936 |           |           | 143:40.09E |       | 3228   |        |           | 143:39.80E | -    | -      |      | 50:10.06S |            |       |  |  |
| 31 SR3         | 2355 | 8-NOV-01  | 50:23.91S | 143:31.89E | 3370  | 352    | 0009   | 50:23.95S | 143:31.63E | -    | -      | 0037 | 50:24.06S | 143:31.58E | -     |  |  |
| 32 SR3         | 0253 |           |           | 143:26.89E |       | 3802   | -      |           | 143:26.65E |      |        |      | 50:24.37S |            |       |  |  |
| 33 SR3         | 0847 |           |           | 143:25.06E |       | 3524   |        |           | 143:24.80E | 3417 | 18.9   |      | 50:40.38S |            |       |  |  |
| 34 particle    | 1447 |           |           | 143:16.40E |       | 400    |        |           | 143:16.59E | -    | -      |      | 51:00.18S |            |       |  |  |
| 35 particle    | 1815 |           |           | 143:17.79E |       | 1002   | -      |           | 143:17.83E | -    | -      | _    | 51:00.68S |            |       |  |  |
| 36 particle    | 2043 |           |           | 143:17.98E |       | 402    |        |           | 143:18.02E | -    | -      |      | 51:01.46S |            |       |  |  |
| 37 SR3         | 2322 | 9-NOV-01  | 51:02.21S | 143:20.36E | 3736  | 3860   | 0053   | 51:02.04S | 143:21.45E | -    | 16.7   | 0236 | 51:01.60S | 143:22.62E | -     |  |  |
| 38 particle    |      |           |           | 143:25.18E |       | 800    | 0513   | 51:00.17S | 143:25.48E | -    | -      | 0536 | 51:00.26S | 143:25.76E | -     |  |  |
| 39 SR3         | 0939 | 10-NOV-01 | 51:15.55S | 143:07.87E | 3679  | 3854   | 1056   | 51:15.33S | 143:08.31E | 3744 | 21.1   | 1220 | 51:14.98S | 143:09.39E | -     |  |  |
| 40 SR3         | 1427 | 10-NOV-01 | 51:32.28S | 142:59.71E | 3645  | 3818   | 1541   | 51:31.83S | 143:00.40E | 3686 | 11.7   | 1723 | 51:31.47S | 143:01.21E | 3656  |  |  |

Table 2: (continued)

|                 |      |           | START     |           |              | maxP   |      |            | воттом     |              |               |      | -         | END        | _            |
|-----------------|------|-----------|-----------|-----------|--------------|--------|------|------------|------------|--------------|---------------|------|-----------|------------|--------------|
| Station number  | time | date      | latitude  | longitude | depth<br>(m) | (dbar) | time | latitude   | longitude  | depth<br>(m) | altim.<br>(m) | time | latitude  | longitude  | depth<br>(m) |
| 41 SR3          | 1928 | 10-NOV-01 | 51:48.57S | 142:50.34 | E 3655       | 3784   | 2047 | 51:48.19S  | 142:50.69E | _            | 19.8          | 2225 | 51:48.07S | 142:50.60E | -            |
| 42 SR3          | 2355 | 10-NOV-01 | 51:47.91S | 142:50.62 | E 3680       | 350    | 0014 | 51:47.89S  | 142:50.64E | -            | -             | 0034 | 51:47.85S | 142:50.65E | -            |
| 43 SR3          | 0330 | 11-NOV-01 | 52:05.12S | 142:41.80 | E 3428       | 3544   | 0428 | 52:05.05S  | 142:42.01E | 3431         | 18.0          | 0550 | 52:04.98S | 142:42.90E | -            |
| 44 large volume | 0813 | 11-NOV-01 | 52:22.14S | 142:31.93 | E 3490       | 16     | 0816 | 52:22.18S  | 142:31.85E | -            | -             | 0823 | 52:22.18S | 142:31.93E | -            |
| 45 SR3          | 0849 | 11-NOV-01 | 52:22.30S | 142:31.90 | E 3370       | 3492   | 0957 | 52:22.35S  | 142:32.21E | 3383         | 15.3          | 1132 | 52:22.49S | 142:32.00E | -            |
| 46 SR3          | 1351 | 11-NOV-01 | 52:40.03S | 142:23.60 | E 3300       | 3506   | 1512 | 52:39.88S  | 142:24.87E | -            | 15.8          | 1646 | 52:40.02S | 142:26.29E | -            |
| 47 SR3          | 1829 | 11-NOV-01 | 52:39.80S | 142:24.31 | E 3290       | 368    | 1839 | 52:39.83S  | 142:24.42E | -            | -             | 1902 | 52:39.79S | 142:24.67E | -            |
| 48 SR3          | 2204 | 11-NOV-01 | 53:07.87S | 142:08.76 | E 3064       | 3178   | 2311 | 53:07.89S  | 142:09.14E | -            | 20.4          | 0045 | 53:07.66S | 142:09.38E | -            |
| 49 SR3          | 0308 | 12-NOV-01 | 53:25.72S | 141:57.11 | E 2775       | 2848   | 0404 | 53:25.70S  | 141:57.25E | 2783         | 18.3          | 0530 | 53:25.60S | 141:57.23E | 2807         |
| 50 particle     | 0538 | 13-NOV-01 | 53:44.31S | 141:50.53 | E 2850       | 1002   | 0600 | 53:44.18S  | 141:50.90E | -            | -             | 0642 | 53:43.99S | 141:50.88E | 2958         |
| 51 SR3          | 0811 | 13-NOV-01 | 53:44.23S | 141:51.09 | E 3000       | 3098   | 0916 | 53:44.19S  | 141:51.12E | -            | 19.0          | 1040 | 53:44.09S | 141:50.97E | -            |
| 52 particle     | 1638 | 13-NOV-01 | 53:44.15S | 141:53.64 | E 3091       | 3184   | 1749 | 53:43.86S  | 141:53.95E | 3105         | 39.2          | 1856 | 53:43.73S | 141:54.06E | -            |
| 53 particle     | 0143 | 14-NOV-01 | 53:46.60S | 141:53.36 | E 3010       | 404    | 0153 | 53:46.63S  | 141:53.43E | -            | -             | 0215 | 53:46.62S | 141:53.53E | -            |
| 54 SR3          | 1353 | 14-NOV-01 | 54:04.12S | 141:36.13 | E 2504       | 2594   | 1452 | 54:03.85S  | 141:36.18E | -            | 13.0          | 1621 | 54:03.385 | 141:36.39E | 2660         |
| 55 SR3          | 1934 | 14-NOV-01 | 54:31.78S | 141:20.17 | E 2777       | 352    | 1947 | 54:31.77S  | 141:20.23E | 2768         | -             |      |           | 141:20.18E |              |
| 56 SR3          | 2120 | 14-NOV-01 | 54:31.92S | 141:20.68 | E 2800       | 2868   | 2226 | 54:32.08S  | 141:21.04E | -            | 15.4          | 0000 | 54:32.00S | 141:20.91E | -            |
| 57 SR3          |      | 15-NOV-01 |           |           |              | 3256   |      |            | 141:01.52E | -            | 20.0          |      |           | 141:01.68E | -            |
| 58 SR3          | 1116 | 15-NOV-01 | 55:29.64S | 140:43.99 | E 3900       | 350    | 1127 | 55:29.56S  | 140:44.04E | -            | -             | 1148 | 55:29.32S | 140:43.95E | -            |
| 59 SR3          | 1255 | 15-NOV-01 | 55:28.81S | 140:43.90 | E 3900       | 4102   |      |            | 140:43.86E | -            | 8.9           | 1557 | 55:28.26S | 140:44.19E | -            |
| 60 SR3          | 1939 | 15-NOV-01 | 55:55.30S | 140:24.78 | E 3550       | 3598   | 2043 | 55:54.91S  | 140:25.05E |              | 12.3          | 2228 | 55:54.29S | 140:25.09E | -            |
| 61 SR3          | 0152 | 16-NOV-01 | 56:25.56S | 140:05.85 | E 3800       | 4070   | 0310 | 56:25.39\$ | 140:06.52E | -            | 15.1          | 0428 | 56:25.16S | 140:07.05E | -            |
| 62 SR3          | 0810 | 16-NOV-01 | 56:56.14S | 139:50.42 | E 4100       | 402    | 0824 | 56:56.22S  | 139:50.63E | -            | -             | 0849 | 56:56.26S | 139:50.76E | -            |
| 63 SR3          | 1014 | 16-NOV-01 | 56:55.93S | 139:51.32 | E 4100       | 4204   | 1124 | 56:55.62S  | 139:51.60E | -            | 16.8          | 1252 | 56:55.34S | 139:51.97E | -            |
| 64 particle     | 1647 | 16-NOV-01 | 56:53.62S | 139:54.91 | E 4000       | 1000   | 1720 | 56:53.59S  | 139:55.18E | -            | -             |      |           | 139:55.40E | -            |
| 65 particle     | 1955 | 16-NOV-01 | 56:52.98S | 139:56.14 | E 4000       | 302    | 2007 | 56:52.80S  | 139:55.93E | -            | -             | 2029 | 56:52.72S | 139:56.01E | -            |
| 66 SR3          | 2014 | 17-NOV-01 | 57:51.15S | 139:50.67 | E 4100       | 4056   | 2150 | 57:50.81S  | 139:50.72E | -            | 13.9          | 2339 | 57:50.67S | 139:50.35E | -            |
| 67 SR3          | 1534 | 18-NOV-01 | 58:50.96S | 139:51.12 | E 3860       | 4012   | 1713 | 58:50.82S  | 139:50.97E | -            | 15.2          | 1840 | 58:50.55S | 139:50.43E | -            |
| 68 SR3          | 2009 | 18-NOV-01 | 58:50.22S | 139:49.59 | E 3800       | 354    | 2022 | 58:50.14S  | 139:49.59E | -            | -             | 2046 | 58:50.11S | 139:49.56E | -            |
| 69 SR3          | 2352 | 18-NOV-01 | 59:20.945 | 139:51.26 | E 4100       | 4254   | 0125 | 59:21.01S  | 139:50.90E | -            | 17.5          | 0305 | 59:20.94S | 139:51.39E | -            |
| 70 SR3          | 0609 | 19-NOV-01 | 59:50.87S | 139:51.21 | E 4376       | 402    | 0622 | 59:50.76S  | 139:51.07E | 4377         | -             | 0643 | 59:50.58S | 139:51.18E | 4374         |
| 71 SR3          | 0753 | 19-NOV-01 | 59:50.20S | 139:50.47 | E 4374       | 4534   |      |            | 139:50.24E | -            | 15.7          | 1038 | 59:49.24S | 139:50.71E | -            |
| 72 SR3          | 1406 | 19-NOV-01 | 60:21.01S | 139:50.94 | E 4340       | 4498   | 1539 | 60:20.25S  | 139:50.59E | 4342         | 15.0          |      |           | 139:51.55E |              |
| 73 particle     | 2150 | 20-NOV-01 | 60:51.13S | 139:51.37 | E 4301       | 1000   | 2224 | 60:51.10S  | 139:51.73E | 4302         | -             | 2256 | 60:51.07S | 139:51.67E | 4303         |
| 74 particle     | 0027 | 21-NOV-01 | 60:50.88S | 139:52.12 | E 4305       | 402    | 0042 | 60:50.87S  | 139:52.02E | -            | -             | 0105 | 60:50.77S | 139:51.82E | -            |
| 75 SR3          | 0239 | 21-NOV-01 | 60:50.17S | 139:52.33 | E 4300       | 4464   | 0350 | 60:50.14S  | 139:52.42E | -            | 15.0          | 0522 | 60:50.12S | 139:52.67E | -            |
| 76 particle     | 1233 | 21-NOV-01 | 60:48.82S | 139:56.47 | E 4310       | 4466   | 1436 | 60:48.24S  | 139:56.02E | -            | 15.2          | 1634 | 60:47.90S | 139:56.84E | -            |
| 77 SR3          |      | 22-NOV-01 |           |           |              | 352    | 0457 | 61:20.71S  | 139:50.85E | -            | -             | 0521 | 61:20.61S | 139:51.07E | -            |
| 78 SR3          |      | 22-NOV-01 |           |           |              | 4400   |      |            | 139:53.41E | -            | 17.0          |      |           | 139:52.41E |              |
| 79 SR3          |      | 22-NOV-01 |           |           |              | 1      |      |            | 139:50.94E | 4201         |               |      |           | 139:50.77E |              |
| 80 SR3          |      | 22-NOV-01 |           |           |              |        |      |            | 139:48.28E |              |               |      |           | 139:47.74E |              |
| 81 SR3          |      | 23-NOV-01 |           |           |              | 352    |      |            | 139:49.48E |              | -             |      |           | 139:49.67E |              |
| 82 SR3          |      |           | 62:50.59S |           |              |        |      |            | 139:51.57E |              |               |      |           | 139:51.81E |              |

Table 2: (continued)

|                   |      |           | START     |            |              | mayD           |      |           | воттом     | -            |               | END  |           |            |              |
|-------------------|------|-----------|-----------|------------|--------------|----------------|------|-----------|------------|--------------|---------------|------|-----------|------------|--------------|
| Station number    | time | date      | latitude  | longitude  | depth<br>(m) | maxP<br>(dbar) | time | latitude  | longitude  | depth<br>(m) | altim.<br>(m) | time | latitude  | longitude  | depth<br>(m) |
| 83 SR3            | 1225 | 24-NOV-01 | 63:22.23S | 139:51.64E | 3718         | 3836           | 1346 | 63:21.74S | 139:52.17E | 3720         | 15.6          | 1526 | 63:21.58S | 139:52.84E | 3713         |
| 84 SR3            | 1648 | 24-NOV-01 | 63:21.85S | 139:53.20E | 3717         | 350            | 1706 | 63:21.79S | 139:53.13E | 3714         | -             | 1739 | 63:21.66S | 139:52.68E | 3717         |
| 85 particle       | 2159 | 24-NOV-01 | 63:54.01S | 139:52.89E | 3636         | 1002           | 2226 | 63:53.82S | 139:52.62E | 3642         | -             |      |           | 139:52.58E |              |
| 86 particle       | 0031 | 25-NOV-01 | 63:53.84S | 139:51.65E | 3640         | 400            | 0051 | 63:53.75S | 139:51.52E | 3640         | -             | 0121 | 63:53.79S | 139:51.35E | 363          |
| 87 SR3            | 0434 | 25-NOV-01 | 63:53.33S | 139:58.85E | 3638         | 3750           | 0546 | 63:52.47S | 139:59.78E | 3638         | 20.0          |      |           | 140:00.74E |              |
| 88 particle       | 1636 | 25-NOV-01 | 63:50.16S | 139:57.88E | 3649         | 3760           | 1759 | 63:49.485 | 139:59.36E | -            | 18.4          | 1921 | 63:48.89S | 140:00.11E | -            |
| 89 SR3            | 0750 | 26-NOV-01 | 64:09.87S | 140:25.02E | 3530         | 3632           | 0900 | 64:10.06S | 140:25.32E | 3532         | 14.5          | 1017 | 64:10.22S | 140:25.84E | 353          |
| 90 SR3            | 1516 | 26-NOV-01 | 64:31.24S | 141:22.27E | 3403         | 3492           | 1632 | 64:31.11S | 141:23.30E | 3404         | 12.1          | 1754 | 64:31.30S | 141:24.45E | 339          |
| 91 SR3            | 2049 | 26-NOV-01 | 64:47.12S | 141:49.53E | 3001         | 3086           | 2149 | 64:46.90S | 141:50.05E | 3011         | 14.0          | 2309 | 64:46.83S | 141:50.95E | 303          |
| 92 SR3            | 0030 | 27-NOV-01 | 64:46.90S | 141:52.74E | 3060         | 352            | 0046 | 64:46.73S | 141:52.99E | 3058         | -             | 0108 | 64:46.53S | 141:53.52E | 306          |
| 93 SR3            | 0441 | 27-NOV-01 | 65:01.30S | 142:26.98E | 2797         | 2838           | 0525 | 65:01.37S | 142:26.56E | 2774         | 19.2          | 0630 | 65:01.40S | 142:26.06E | 275          |
| 94 SR3            | 0938 | 27-NOV-01 | 65:14.98S | 143:04.66E | 2948         | 3008           | 1043 | 65:15.32S | 143:04.81E | 2942         | 18.3          | 1200 | 65:15.52S | 143:04.66E | 293          |
| 95 SR3            | 1728 | 27-NOV-01 | 65:31.93S | 143:10.21E | 2662         | 2716           | 1824 | 65:31.96S | 143:10.33E | 2662         | 14.2          | 1952 | 65:32.18S | 143:10.66E | 265          |
| 96 SR3            | 2130 | 27-NOV-01 | 65:31.81S | 143:11.25E | 2655         | 352            | 2141 | 65:31.75S | 143:11.28E | 2654         | -             | 2202 | 65:31.83S | 143:11.30E | 265          |
| 97 SR3            | 2323 | 27-NOV-01 | 65:41.57S | 143:04.29E | 2124         | 2168           | 8000 | 65:41.69S | 143:04.48E | 2112         | 13.2          | 0115 | 65:41.71S | 143:04.51E | 210          |
| 98 SR3            | 0240 | 28-NOV-01 | 65:46.00S | 142:57.68E | 1679         | 1692           | 0315 | 65:46.04S | 142:58.30E | 1649         | 20.1          | 0419 | 65:46.29S | 142:59.07E | 155          |
| 99 SR3            | 0741 | 28-NOV-01 | 65:48.68S | 142:53.44E | 1062         | 1052           | 0805 | 65:48.64S | 142:54.00E | 1026         | 18.0          | 0834 | 65:48.63S | 142:54.71E | 101          |
| 100 SR3           | 1046 | 28-NOV-01 | 66:00.03S | 143:09.70E | 469          | 456            | 1054 | 65:59.95S | 143:09.70E | 469          | 16.7          | 1116 | 65:59.80S | 143:09.99E | 464          |
| 101 exit trough   | 1512 | 28-NOV-01 | 66:11.96S | 142:49.74E | 490          | 480            | 1529 | 66:11.95S | 142:49.22E | 490          | 8.0           | 1556 | 66:11.98S | 142:49.14E | 484          |
| 102 exit trough   | 1656 | 28-NOV-01 | 66:12.18S | 143:08.88E | 600          | 596            | 1713 | 66:12.18S | 143:09.01E | 598          | 14.9          | 1742 | 66:12.16S | 143:09.10E | 601          |
| 103 exit trough   | 1901 | 28-NOV-01 | 66:11.92S | 143:24.90E | 551          | 536            | 1917 | 66:11.92S | 143:24.90E | 547          | 14.5          | 1939 | 66:11.92S | 143:25.02E | 543          |
| 104 exit trough   | 2041 | 28-NOV-01 | 66:12.00S | 143:39.99E | 486          | 482            | 2100 | 66:11.88S | 143:40.08E | 477          | 14.9          | 2122 | 66:12.07S | 143:40.50E | 481          |
| 105 particle      | 0213 | 29-NOV-01 | 66:35.14S | 144:13.93E | 801          | 790            | 0230 | 66:35.13S | 144:13.99E | 801          | 17.1          | 0257 | 66:35.16S | 144:14.05E | 805          |
| 106 SR3           | 0716 | 29-NOV-01 | 66:35.30S | 144:15.18E | 803          | 790            | 0730 | 66:35.29S | 144:15.22E | 807          | 18.9          | 0755 | 66:35.15S | 144:15.27E | 804          |
| 107 Buchanan Bay  | 1535 | 29-NOV-01 | 67:09.42S | 144:46.17E | 484          | 470            | 1555 | 67:09.39S | 144:46.00E | 472          | 16.9          | 1632 | 67:09.03S | 144:45.90E | 474          |
| 108 Mertz Glacier | 1919 | 29-NOV-01 | 66:57.88S | 145:15.95E | 940          | 960            | 1957 | 66:58.14S | 145:15.34E | 977          | 18.6          | 2034 | 66:58.34S | 145:15.12E | 998          |
| 109 upstream      | 0131 | 30-NOV-01 | 66:23.03S | 144:18.12E | 481          | 460            | 0145 | 66:22.95S | 144:18.08E | 476          | 20.2          | 0207 | 66:22.83S | 144:17.94E | 476          |
| 110 upstream      | 0310 | 30-NOV-01 | 66:17.08S | 144:23.64E | 417          | 408            | 0320 | 66:17.08S | 144:23.57E | 417          | 20.3          | 0341 | 66:17.04S | 144:23.66E | 418          |
| 111 upstream      | 0518 | 30-NOV-01 | 66:07.82S | 144:29.81E | 345          | 330            | 0527 | 66:07.76S | 144:29.65E | 344          | 17.3          | 0540 | 66:07.57S | 144:29.69E | 339          |
| 112 upstream      | 0705 | 30-NOV-01 | 66:01.16S | 144:29.09E | 293          | 286            | 0713 | 66:01.13S | 144:29.06E | 292          | 19.1          | 0726 | 66:01.03S | 144:28.81E | 292          |
| 113 upstream      | 0838 | 30-NOV-01 | 65:54.87S | 144:30.82E | 931          | 974            | 0900 | 65:54.80S | 144:31.11E | 959          | 20.3          | 0927 | 65:54.61S | 144:31.06E | 102          |
| 114 upstream      | 1020 | 30-NOV-01 | 65:52.62S | 144:29.99E | 1725         | 1786           | 1056 | 65:52.60S | 144:30.08E | 1737         | 19.2          | 1150 | 65:52.65S | 144:30.19E | 172          |
| 115 upstream      | 1308 | 30-NOV-01 | 65:47.35S | 144:31.81E | 2565         | 2618           | 1403 | 65:47.13S | 144:31.62E | 2563         | 12.8          | 1525 | 65:46.79S | 144:31.99E | 260          |
| 116 downstream    | 1634 | 3-DEC-01  | 65:44.63S | 141:04.06E | 442          | 440            |      |           | 141:04.12E | 447          |               | 1717 | 65:44.46S | 141:04.29E | 456          |
| 117 downstream    | 2013 | 3-DEC-01  | 65:40.27S | 141:11.00E | 772          | 768            | 2034 | 65:40.23S | 141:11.45E | 773          | 13.9          | 2106 | 65:40.22S | 141:12.12E | 770          |
| 118 downstream    | 2201 | 3-DEC-01  | 65:36.75S | 141:14.99E | 1137         | 1152           | 2227 | 65:36.61S | 141:15.45E | 1160         | 13.0          | 2307 | 65:36.41S | 141:15.94E | 115          |
| 119 downstream    | 0031 |           |           | 141:15.18E |              |                |      |           | 141:15.59E |              |               |      |           | 141:15.13E |              |
| 120 downstream    | 0424 |           |           | 141:17.18E |              | 2288           |      |           | 141:17.50E |              |               |      |           | 141:17.26E |              |
| 121 downstream    | 1015 |           |           | 140:38.23E |              | 2234           |      |           | 140:38.63E |              |               |      |           | 140:39.00E |              |
| 122 particle      | 1545 |           |           | 139:52.52E |              | 1002           |      |           | 139:52.40E |              | -             |      |           | 139:52.50E |              |
| 123 particle      | 1824 |           |           | 139:52.89E |              | 502            | -    |           | 139:52.65E |              | -             |      |           | 139:52.50E |              |
| 124 downstream    | 2103 |           |           | 139:52.38E |              |                | -    |           | 139:52.08E |              | 13.0          |      |           | 139:51.67E |              |

Table 2: (continued)

|                | START |           |           |            |       | maxP   | BOTTOM |           |            |       |        |      | END       |            |       |  |
|----------------|-------|-----------|-----------|------------|-------|--------|--------|-----------|------------|-------|--------|------|-----------|------------|-------|--|
| Station number | time  | date      | latitude  | longitude  | depth | (dbar) | time   | latitude  | longitude  | depth | altim. | time | latitude  | longitude  | depth |  |
|                |       |           |           |            | (m)   | (ubai) |        |           |            | (m)   | (m)    |      |           |            | (m)   |  |
| 125 downstream | 0555  | 5-DEC-01  | 64:30.54S | 139:52.92E | 3043  | 3130   | 0702   | 64:30.48S | 139:53.74E | 3052  | 19.0   | 0809 | 64:30.485 | 139:55.22E | 3073  |  |
| 126 particle   | 1319  | 5-DEC-01  | 63:55.24S | 139:51.76E | 3633  | 500    | 1337   | 63:55.16S | 139:51.56E | 3629  | -      | 1422 | 63:54.93S | 139:50.92E | 3632  |  |
| 127 particle   | 1552  | 5-DEC-01  | 63:54.29S | 139:49.32E | 3632  | 1002   | 1616   | 63:54.10S | 139:49.02E | 3638  | -      | 1656 | 63:53.98S | 139:48.58E | 3637  |  |
| 128 particle   | 1857  | 5-DEC-01  | 63:53.18S | 139:47.75E | 3649  | 352    | 1910   | 63:53.07S | 139:47.71E | 3652  | -      | 1936 | 63:52.99S | 139:47.71E | 3655  |  |
| 129 particle   | 1336  | 7-DEC-01  | 60:50.29S | 139:52.65E | 4311  | 354    | 1352   | 60:50.23S | 139:52.98E | 4306  | -      | 1411 | 60:50.24S | 139:53.23E | 4302  |  |
| 130 particle   | 1529  | 7-DEC-01  | 60:50.21S | 139:53.59E | 4307  | 1002   | 1555   | 60:50.14S | 139:53.73E | 4304  | -      | 1627 | 60:49.895 | 139:53.79E | 4304  |  |
| 131 particle   | 1756  | 7-DEC-01  | 60:49.78S | 139:56.02E | 4305  | 502    | 1813   | 60:49.71S | 139:56.26E | 4307  | -      | 1850 | 60:49.68S | 139:56.49E | 4305  |  |
| 132 particle   | 2041  | 7-DEC-01  | 60:48.66S | 139:56.61E | 4307  | 154    | 2051   | 60:48.57S | 139:56.70E | 4307  | -      | 2100 | 60:48.485 | 139:56.70E | 4308  |  |
| 133 particle   | 1730  | 10-DEC-01 | 51:00.40S | 143:18.39E | 3700  | 344    | 1742   | 51:00.34S | 143:18.49E | -     | -      | 1801 | 51:00.21S | 143:18.60E | 3721  |  |
| 134 particle   | 1841  | 10-DEC-01 | 50:59.97S | 143:19.09E | 3740  | 1002   | 1907   | 50:59.83S | 143:19.10E | 3745  | -      | 1941 | 50:59.67S | 143:19.31E | -     |  |
| 135 particle   | 0557  | 11-DEC-01 | 51:23.42S | 142:58.61E | 3700  | 52     | 0601   | 51:23.44S | 142:58.94E | -     | -      | 0607 | 51:23.44S | 142:59.02E | -     |  |

**Table 3:** Summary of samples drawn from Niskin bottles at each station, including salinity (sal), dissolved oxygen (do), nutrients (nut), chlorofluorocarbons (CFC), carbon tetrachloride (CCl<sub>4</sub>), dissolved inorganic carbon (dic), alkalinity (alk), dimethyl sulphide/dimethyl sulphoniopropionate/dimethyl sulphoxide (dms), halocarbons (hal), barium (bam), barite (bat), ammonia (NH<sub>3</sub>), δ<sup>30</sup>Si, dissolved organic carbon (doc), particulate organic carbon (POC), particulate silicate (PSi), <sup>15</sup>N-nitrate, <sup>18</sup>O, <sup>234</sup>Th, <sup>230</sup>Th/<sup>231</sup>Pa, primary productivity (pp), bacterial production (bac), grazing dilution (grz), spectral absorbance (sa), HPLC pigments (pig), flow cytometry (fc) for phytoplankton and bacteria, coccolithophorid counts (coc), protist bulk fixes (pro), size-fractionated chlorophyll and primary production (frac), species ID by Dehairs group (sp.D), and bacterial groups sampled by Skerratt (baS). Note that 1=samples taken, 0=no samples taken, 2=surface sample only (i.e. from shallowest Niskin bottle), 3=one sample only from the profile. Also included are stations where trace metal casts for iron were taken from the stern (fe); stations where vertical fast repetition rate fluorometry (frrf) and transmittance (tran) were measured, using additional sensors; and stations where fluorescence was measured on the main rosette (fl) using a Sea Tech fluorometer from either CSIRO or Antarctic Division, denoted respectively by C or A in the table. Note that for stations 1 to 52 where the transmissometer was fitted to the main rosette package, no good transmittance data were obtained.

| stn      |            | sal | do | nut | CFC | CCl <sub>4</sub> | dic/<br>alk | dms    | hal | ba<br>m | bat | NH<br>3 | $\delta^{30} \text{Si}$ | doc | POC<br>/PSi | <sup>15</sup> N_<br>NO <sub>3</sub> | <sup>18</sup> O | <sup>234</sup> Th | <sup>230</sup> Th/<br><sup>231</sup> Pa | pp     | bac    | grz    | sa     | pig    | fc | coc | pro | frac   | sp.D | baS | fe | frrf | tran | fl |
|----------|------------|-----|----|-----|-----|------------------|-------------|--------|-----|---------|-----|---------|-------------------------|-----|-------------|-------------------------------------|-----------------|-------------------|-----------------------------------------|--------|--------|--------|--------|--------|----|-----|-----|--------|------|-----|----|------|------|----|
| 1        | test       | 1   | 1  | 1   | 1   | 0                | 0           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 2        | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 1   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 3        | SR3        | 1   | 1  | 1   | 0   | 0                | 2           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 1           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 4        | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 5        | SR3        | 1   | 1  | 1   | 0   | 0                | 2           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 3               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 6        | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 1                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 7        | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 8        | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 1      | 0   | 0       | 0   | 0       | 0                       | 0   | 1           | 1                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 1   | 0   | 0      | 0    | 0   | 0  | 1    | 1    | С  |
| 9        | SR3        | 1   | 1  | 1   | 1   | 1                | 1           | 0      | 1   | 1       | 0   | 0       | 0                       | 0   | 0           | 1                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | С  |
| 10       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 1                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 1    | 1    | С  |
| 11       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 1                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 0    | 0  |
| 12       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 1      | 0   | 0       | 0   | 0       | 0                       | 0   | 1           | 1                                   | 0               | 0                 | 0                                       | 1      | 1      | 1      | 0      | 1      | 1  | 0   | 1   | 1      | 0    | 0   | 0  | 1    | 0    | Α  |
| 13       | SR3        | 1   | 1  | 1   | 0   | 0                | 0           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 1    | 0    | 0  |
| 14       | part.      | 1   | 1  | 1   | 0   | 0                | 0           | 1      | 0   | 0       | 0   | 1       | 0                       | 1   | 1           | 0                                   | 0               | 1                 | 0                                       | 1      | 1      | 1      | 1      | 0      | 0  | 0   | 0   | 1      | 0    | 0   | 1  | 0    | 0    | Α  |
| 15       | part.      | 0   | 0  | 1   | 0   | 0                | 0           | 0      | 0   | 0       | 1   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 1                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 1    | 0   | 0  | 0    | 1    | C  |
| 16       | part.      | 1   | 1  | 1   | 0   | 0                | 0           | 0      | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 1                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 0    | 0  |
| 17       | part.      | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 0       | 0   | 1       | 1                       | 1   | 0           | 1                                   | 2               | 1                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 1  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 0    | 0  |
| 18       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 1      | 0   | 0       | 0   | 0       | 0                       | 0   | 1           | 1                                   | 0               | 0                 | 0                                       | 1      | 1      | 0      | 1      | 1      | 1  | 1   | 0   | 1      | 0    | 0   | 0  | 0    | 1    | C  |
| 19       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 1   | 1       | 0   | 0       | 0                       | 0   | 0           | 1                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | C  |
| 20       | SR3        | 1   | 1  | 1   | 1   | 1                | 2           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 1    | 1    | C  |
| 21       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 1                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 0    | 0   | 0  | 0    | 1    | C  |
| 22       | SR3        | 1   | Ţ  | 1   | 1   | 0                | Ţ           | 1      | 0   | 0       | 0   | 0       | 0                       | 0   | 1           | 1                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 0   | 0   | 1      | 0    | 0   | 0  | 1    | 1    | C  |
| 23       | part.      | 0   | 0  | 1   | 0   | 0                | 0           | 0      | 0   | 0       | Ţ   | 1       | 0                       | 1   | 0           | 0                                   | 0               | 1                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | 0   | 0      | 1    | 0   | 0  | 1    | 1    | C  |
| 24       | SR3        | 1   | 1  | 1   | 1   | 0                | Ţ           | 0      | 0   | Ţ       | 0   | 0       | 1                       | 0   | 0           | 1                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0  | 0   | U   | 0      | 0    | 0   | 0  | 0    | 1    | C  |
| 25       | SR3        | 1   | 1  | 1   | 0   | 0                | 0           | 1      | 0   | U       | 0   | T       | 0                       | Ţ   | Ţ           | 1                                   | 0               | Ţ                 | 0                                       | Ţ      | Ţ      | Ţ      | Ţ      | 1      | 1  | Ţ   | Ţ   | Ţ      | 0    | 0   | 0  | 0    | 1    | C  |
| 26       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 0      | Ţ   | Ţ       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1  | 0   | 0   | 1      | 0    | 0   | 0  | Ţ    | 1    | C  |
| 27       | SR3        | 1   | 1  | 1   | 1   | 0                | 1           | 1      | 0   | 1       | 0   | 0       | 0                       | 0   | Ţ           | 1                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | Ţ      | Ţ  | 1   | 1   | 1      | 0    | 0   | 0  | 1    | 1    | C  |
| 28       | SR3        | 1   | 1  | 1   | T   | 0                | T           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 1  | 0   | 0   | 0      | 0    | 0   | 0  | 1    | 1    | C  |
| 29       | SR3        | 1   | 1  | 1   | 0   | 0                | 1           | 0      | 0   | 1       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | T      | T  | 0   | 0   | 0      | 0    | 0   | 0  | 1    | 1    | C  |
| 30<br>31 | SR3<br>SR3 | 1   | 1  | 1   | 1   | 0                | 1           | 0<br>1 | 0   | 0       | 0   | 0       | 0                       | 0   | 0<br>1      | 0<br>1                              | 2<br>0          | 0<br>0            | 0<br>0                                  | 0<br>1 | 0<br>1 | 0<br>0 | 0<br>1 | 0<br>1 | 1  | 1   | 0   | 0<br>1 | 0    | 0   | 0  | 0    | 1    | C  |

| Tab      | le 3:          |        | (cor   | ntinu  | ıed)   |                  |             |        |        |         |        |         |                  |        |             |                                     |                 |                   |                                         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|----------|----------------|--------|--------|--------|--------|------------------|-------------|--------|--------|---------|--------|---------|------------------|--------|-------------|-------------------------------------|-----------------|-------------------|-----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| stn      |                | sal    | do     | nut    | CFC    | CCl <sub>4</sub> | dic/<br>alk | dms    | hal    | ba<br>m | bat    | NH<br>3 | $\delta^{30} Si$ | doc    | POC<br>/PSi | <sup>15</sup> N_<br>NO <sub>3</sub> | <sup>18</sup> O | <sup>234</sup> Th | <sup>230</sup> Th/<br><sup>231</sup> Pa | pp     | bac    | grz    | sa     | pig    | fc     | coc    | pro    | frac   | sp.D   | baS    | fe     | frrf   | tran   | fl     |
| 32       | SR3            | 1      | 1      | 1      | 0      | 0                | 0           | 0      | 1      | 0       | 0      | 0       | 0                | 0      | 0           | 1                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | С      |
| 33       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      | C      |
| 34<br>35 | part.<br>part. | 0      | 0      | 0<br>1 | 0<br>0 | 0<br>0           | 0<br>0      | 0<br>0 | 0<br>0 | 0       | 1      | 0       | 0                | 0      | 0<br>0      | 0                                   | 0<br>0          | 0<br>1            | 0<br>0                                  | 0      | 0      | 0<br>0 | 0      | 0<br>0 | 0<br>0 | 0      | 0      | 0<br>0 | 0      | 0<br>0 | U      | 0      | 1      | C<br>C |
| 36       | part.          | 1      | 0      | 1      | 0      | 0                | 0           | 1      | 0      | 0       | 0      | 0       | 0                | 1      | 1           | 0                                   | 0               | 1                 | 0                                       | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 1      | C      |
| 37       | SR3            | 1      | 1      | 1      | 1      | Ö                | 1           | 1      | Ö      | 1       | Ö      | Ö       | 1                | 1      | Ō           | Ö                                   | Ö               | Ō                 | Ö                                       | Ō      | ō      | ō      | 0      | Ō      | Ō      | Ö      | Ö      | Ō      | Ö      | Ö      | Ö      | 1      | 1      | Č      |
| 38       | part.          | 0      | 0      | 0      | 0      | 0                | 0           | 0      | 1      | 0       | 0      | 0       | 0                | 0      | 0           | 1                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | С      |
| 39       | SR3            | 1      | 1      | 1      | 1      | 1                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | C      |
| 40<br>41 | SR3<br>SR3     | 1<br>1 | 1<br>1 | 1<br>1 | 0<br>1 | 0<br>0           | 2<br>1      | 0<br>0 | 0      | 1       | 0      | 0       | 0                | 0      | 0<br>0      | 0<br>0                              | 0<br>0          | 0<br>0            | 0<br>0                                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0      | 1      | C<br>C |
| 42       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 1      | 0      | 0       | 0      | 0       | 0                | Ö      | 1           | 0                                   | 0               | 0                 | 0                                       | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 1      | 0      | 0      | 0      | 0      | 1      | C      |
| 43       | SR3            | 1      | 1      | 1      | 0      | 0                | 2           | 0      | 1      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | C      |
| 44       | l.vol.         | 0      | 0      | 0      | 0      | 0                | 0           | 0      | 0      | 0       | 0      | 0       | 0                | 0      | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | C      |
| 45       | SR3<br>SR3     | 1      | 1      | 1      | 1<br>1 | 0                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 0<br>2          | 0<br>0            | 0                                       | 0      | 0      | 0      | 0      | 1      | 1<br>0 | 0      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0      | 1      | C      |
| 46<br>47 | SR3            | 1<br>1 | 1<br>1 | 1<br>1 | 1      | 0<br>0           | 1<br>1      | 0<br>1 | 0      | 1<br>0  | 0      | 0       | 0                | 0      | 0<br>1      | 0<br>1                              | 0               | 0                 | 0<br>0                                  | 0      | 0      | 0      | 0      | 0<br>1 | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 1      | C<br>C |
| 48       | SR3            | 1      | 1      | 1      | Ō      | Ö                | 2           | 0      | 1      | 1       | 0      | Ö       | 0                | Ö      | Ō           | Ō                                   | Ö               | 0                 | 0                                       | Ö      | Ö      | 0      | 0      | 1      | Ō      | 1      | Ö      | 0      | 0      | 0      | Ö      | 1      | 1      | C      |
| 49       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      | С      |
| 50       | part.          | 1      | 0      | 1      | 0      | 0                | 0           | 0      | 0      | 0       | 1      | 1       | 0                | 0      | 0           | 0                                   | 0               | 1                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 1      | C      |
| 51<br>52 | SR3<br>part.   | 1      | 1<br>0 | 1<br>0 | 1<br>0 | 0<br>0           | 1<br>0      | 0      | 1<br>0 | U<br>T  | 0      | 0       | 1<br>0           | 1<br>0 | 0           | 1<br>0                              | 2<br>0          | 0                 | 0<br>1                                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0<br>0 | 0      | 0      | 1<br>0 | 1      | C<br>C |
| 53       | part.          | 1      | 0      | 1      | 0      | 0                | 0           | 1      | 0      | 0       | 0      | 0       | 0                | 1      | 1           | 1                                   | 0               | 1                 | 0                                       | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 1      | 0      | 1      | 1      | 0      | 0      | C      |
| 54       | SR3            | 1      | 1      | 1      | 1      | Ō                | 1           | 0      | 0      | 1       | 0      | Ō       | 0                | 0      | 0           | 0                                   | 2               | 0                 | Ö                                       | 0      | 0      | 0      | 0      | 1      | 1      | Ō      | 0      | 0      | 0      | 0      | 0      | Ō      | 0      | Č      |
| 55       | SR3            | 1      | 1      | 1      | 0      | 0                | 1           | 1      | 0      | 0       | 0      | 0       | 0                | 0      | 1           | 0                                   | 0               | 0                 | 0                                       | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 1      | 1      | C      |
| 56       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 1      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | C      |
| 57<br>58 | SR3<br>SR3     | 1<br>1 | 1<br>1 | 1<br>1 | 1<br>0 | 0<br>0           | 2           | 0      | 0      | 0       | 0      | 0       | 0                | 0      | 0<br>1      | 0<br>0                              | 2<br>0          | 0                 | 0<br>0                                  | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 1<br>0 | 0      | C<br>C |
| 59       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 0      | 1       | 0      | Ö       | 0                | Ö      | Ō           | 0                                   | 2               | Ö                 | 0                                       | 0      | 0      | 0      | Ö      | 0      | Ō      | Ō      | Ö      | 0      | 0      | Ō      | Ö      | Ö      | 1      | C      |
| 60       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 1      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | С      |
| 61       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 1      | 1      | C      |
| 62       | SR3            | 1      | 1      | 1      | 0      | 0                | 1           | 0<br>0 | 0      | 0       | 0      | 0       | 0                | 0      | 0<br>0      | 0                                   | 0               | 0                 | 0<br>0                                  | 0      | 0      | 1<br>0 | 0      | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0      | 0      | 0<br>1 | C      |
| 63<br>64 | SR3<br>part.   | 1<br>1 | 1<br>0 | 1      | 1<br>0 | 0<br>0           | 1<br>0      | 0      | 0      | 0       | 0<br>1 | 0<br>1  | 0                | 1<br>0 | 0           | 1<br>0                              | 2<br>0          | 0<br>1            | 0                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0<br>1 | 0      | 0      | 0      | 1      | C<br>C |
| 65       | part.          | 1      | 0      | 1      | 0      | 0                | 0           | 1      | 0      | 0       | 0      | Ō       | 0                | 1      | 1           | 1                                   | 0               | 1                 | 0                                       | 1      | 1      | 0      | 1      | 1      | 1      | 0      | 0      | 1      | 0      | 1      | 0      | 1      | 0      | Č      |
| 66       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 1      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | С      |
| 67       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | C      |
| 68<br>69 | SR3<br>SR3     | 1<br>1 | 1<br>1 | 1<br>1 | 0<br>1 | 0<br>0           | 1           | 0      | 0      | 0       | 0      | 0       | 0                | 0      | 1<br>0      | 0<br>0                              | 0<br>2          | 0                 | 0<br>0                                  | 1<br>0 | 1<br>0 | 0      | 1<br>0 | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0<br>1 | 0      | C<br>C |
| 70       | SR3            | 1      | 1      | 1      | 0      | 0                | 1           | 0      | 0      | 0       | 0      | 0       | 0                | 0      | 1           | 0                                   | 0               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 0      | 1      | 0      | 1      | 0      | 0      | 1      | C      |
| 71       | SR3            | 1      | 1      | 1      | 1      | 1                | 1           | Ö      | Ö      | 1       | 0      | Ö       | Õ                | 0      | 0           | 0                                   | 2               | Ö                 | Ö                                       | 0      | 0      | Ő      | 0      | 0      | 0      | Ō      | 0      | 0      | Ö      | 0      | 0      | 0      | Ō      | Č      |
| 72       | SR3            | 1      | 1      | 1      | 1      | 0                | 1           | 0      | 0      | 1       | 0      | 0       | 0                | 0      | 0           | 0                                   | 2               | 0                 | 0                                       | 0      | 0      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | С      |
| 73       | part.          | 1      | 0      | 1      | 0      | 0                | 0           | 0      | 0      | 0       | 1      | 1       | 0                | 0      | 0           | 0                                   | 0               | 3                 | 0                                       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 1      | C      |
| 74<br>75 | part.<br>SR3   | 1      | 0<br>1 | 1      | 0<br>1 | 0<br>0           | 0<br>1      | 1<br>0 | 0<br>1 | 0<br>1  | 0      | 0       | 0                | 1      | 1<br>0      | 1<br>1                              | 0<br>2          | 1<br>0            | 0<br>0                                  | 1<br>0 | 0<br>0 | 1<br>1 | 1<br>0 | 0      | 0<br>0 | C<br>C |
| /3       | SKS            | 1      | 1      | Т      | Т      | U                | T           | U      | 1      | 1       | U      | U       | 1                | 1      | U           | 1                                   | 2               | U                 | U                                       | U      | U      | U      | U      | U      | U      | U      | U      | U      | U      | 1      | U      | U      | U      | C      |

| Table 3:                                                                                                                                                                                                                       |   | (                                                                                           | (con                                                                                             | itinu                                                                                            | ed)                                                                                              |                                                                                             |                                                |                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                             |                                                                                                  |                                                                                             |                                                                                             |                                                                                                                                                                                            |                                                                                             |                                                                                                                                                                                            |                                                                                             |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                                  |                 |                                                                                                  |                                                                                             |                                                                                                  |                                                                                                  |                                                                                                                                                                                                           |                                                                                                  |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|
| stn                                                                                                                                                                                                                            | ; | sal                                                                                         | do                                                                                               | nut                                                                                              | CFC                                                                                              | CCl <sub>4</sub>                                                                            | dic/<br>alk                                    | dms                                                                                              | hal                                                                                                                                                                                             | ba<br>m                                                                                                                                                                                                                       | bat                                                                                         | NH<br>3                                                                                          | $\delta^{30} \text{Si}$                                                                     | doc                                                                                         | POC<br>/PSi                                                                                                                                                                                | <sup>15</sup> N_<br>NO <sub>3</sub>                                                         | <sup>18</sup> O                                                                                                                                                                            | <sup>234</sup> Th                                                                           | <sup>230</sup> Th/<br><sup>231</sup> Pa                                                          | pp                                                                                               | bac                                                                                              | grz                                                                                              | sa                                                                                               | pig                                                                                                                                                                                             | fc                                                                                                                                                                                                             | coc                                                                                              | pro             | frac                                                                                             | sp.D                                                                                        | baS                                                                                              | fe                                                                                               | frrf                                                                                                                                                                                                      | tran                                                                                             | fl                                      |
| 76 part. 77 SR3 78 SR3 79 SR3 80 SR3 81 SR3 82 SR3 84 SR3 85 part. 86 part. 87 SR3 88 part. 89 SR3 90 SR3 91 SR3 92 SR3 93 SR3 94 SR3 95 SR3 96 SR3 97 SR3 98 SR3 99 SR3 100 SR3 101 exit 102 exit 103 exit 104 exit 105 part. |   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | alk  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>1<br>1<br>1<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1<br>1<br>0<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                 | 0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 000000000000000000000000000000000000000 |
| 106 SR3<br>107 B.Bay<br>108 Mertz                                                                                                                                                                                              |   | 1<br>1<br>1<br>1                                                                            | 1<br>1<br>1<br>1                                                                                 | 1<br>1<br>1<br>1                                                                                 | 1<br>1<br>1<br>1                                                                                 | 0<br>0<br>0<br>1                                                                            | 1<br>1<br>1<br>1                               | 0<br>0<br>0<br>0                                                                                 | 1<br>0<br>0                                                                                                                                                                                     | 1<br>1<br>0<br>0                                                                                                                                                                                                              | 0 0 0                                                                                       | 0 0 0                                                                                            | 0 0 0                                                                                       | 0 0 0                                                                                       | 1<br>0<br>0                                                                                                                                                                                | 1<br>0<br>0                                                                                 | 0<br>2<br>0<br>0                                                                                                                                                                           | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0                                                                                 | 0<br>1<br>0<br>0                                                                                 | 1<br>0<br>0                                                                                      | 1<br>0<br>0                                                                                      | 1<br>0<br>0                                                                                      | 1<br>0<br>0                                                                                                                                                                                     | 1<br>0<br>0                                                                                                                                                                                                    | 0 0 0                                                                                            | 0 0 0           | 0<br>0<br>0<br>0                                                                                 | 0<br>0<br>0<br>0                                                                            | 0 0 0                                                                                            | 0 0 0                                                                                            | 0<br>0<br>0<br>0                                                                                                                                                                                          | 0<br>0<br>0                                                                                      | C<br>C<br>C<br>A                        |
| 109 up 110 up 111 up 112 up 113 up 114 up 115 up 116 down 117 down 118 down 119 down                                                                                                                                           |   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | 0 0 0 0 0 0 0 0 0                                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0                                                                       | 0<br>0<br>0<br>1<br>0<br>0<br>0                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>0                                                                                                                                                                                          | 0 0 0 0 0 0 0 0 0                                                                           | 0 0 0 0 0 0 0 0                                                                                  | 0 0 0 0 0 0 0 0 0 0                                                                         | 0 0 0 0 0 0 0 0                                                                             | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                 | 0 0 0 0 0 0 0 0 0                                                                           | 0 0 0 0 0 0 0 0                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0 0 0 0 0 0 0 0                                                                                  | 0 0 0 0 0 0 0 0                                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                                       | 0 0 0 0 0 0 0 0                                                                                  | 0 0 0 0 0 0 0 0 0                                                                                                                                                                               | 0 0 0 0 0 0 0 0                                                                                                                                                                                                | 0 0 0 0 0 0 0 0                                                                                  | 0 0 0 0 0 0 0 0 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 0 0 0 0 0 0 0 0 0 0                                                                              | 0 0 0 0 0 0 0 0 0                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1                                                        | A A A A A A A A A                       |

Table 3: (continued)

| stn |       | sal | do | nut | CFC | CCl <sub>4</sub> | dic/<br>alk | dms | hal | ba<br>m | bat | NH<br>3 | $\delta^{30} \text{Si}$ | doc | POC<br>/PSi | <sup>15</sup> N_<br>NO <sub>3</sub> | <sup>18</sup> O | <sup>234</sup> Th | <sup>230</sup> Th/<br><sup>231</sup> Pa | pp | bac | grz | sa | pig | fc | coc | pro | frac | sp.D | baS | fe | frrf | tran | fl |
|-----|-------|-----|----|-----|-----|------------------|-------------|-----|-----|---------|-----|---------|-------------------------|-----|-------------|-------------------------------------|-----------------|-------------------|-----------------------------------------|----|-----|-----|----|-----|----|-----|-----|------|------|-----|----|------|------|----|
| 120 | down  | 1   | 1  | 1   | 1   | 0                | 1           | 0   | 1   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 0  | 0    | 1    | Α  |
| 121 | down  | 1   | 1  | 1   | 1   | 0                | 1           | 0   | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 0  | 1    | 1    | Α  |
| 122 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 0   | 0   | 0       | 1   | 1       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 1    | 0   | 0  | 0    | 0    | Α  |
| 123 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 1   | 0   | 0       | 0   | 0       | 0                       | 1   | 1           | 0                                   | 0               | 1                 | 0                                       | 1  | 1   | 1   | 1  | 1   | 1  | 0   | 0   | 0    | 0    | 0   | 0  | 0    | 1    | Α  |
| 124 | down  | 1   | 1  | 1   | 1   | 0                | 1           | 0   | 1   | 0       | 0   | 0       | 1                       | 1   | 0           | 0                                   | 2               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 0  | 0    | 0    | Α  |
| 125 | down  | 1   | 1  | 1   | 1   | 0                | 0           | 0   | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 0  | 1    | 1    | Α  |
| 126 | part. | 1   | 1  | 1   | 1   | 0                | 1           | 0   | 1   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 2               | 0                 | 0                                       | 1  | 1   | 1   | 1  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 0  | 0    | 1    | Α  |
| 127 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 0   | 0   | 0       | 1   | 1       | 0                       | 0   | 0           | 0                                   | 0               | 3                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 1    | 0   | 0  | 0    | 0    | Α  |
| 128 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 1   | 0   | 0       | 0   | 0       | 0                       | 1   | 1           | 0                                   | 0               | 1                 | 0                                       | 1  | 1   | 0   | 1  | 1   | 1  | 0   | 0   | 1    | 0    | 0   | 0  | 0    | 1    | Α  |
| 129 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 0   | 0   | 0       | 0   | 0       | 0                       | 1   | 1           | 1                                   | 0               | 1                 | 0                                       | 1  | 1   | 1   | 1  | 1   | 1  | 1   | 0   | 1    | 0    | 0   | 0  | 0    | 0    | Α  |
| 130 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 0   | 0   | 0       | 1   | 1       | 0                       | 0   | 0           | 0                                   | 0               | 3                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 1    | 0   | 0  | 0    | 0    | Α  |
| 131 | part. | 1   | 1  | 1   | 1   | 0                | 1           | 0   | 1   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 2               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 1  | 1    | 0    | Α  |
| 132 | part. | 0   | 0  | 0   | 0   | 0                | 0           | 0   | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 1   | 0  | 0    | 0    | Α  |
| 133 | part. | 1   | 0  | 1   | 1   | 0                | 2           | 0   | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 2               | 0                 | 0                                       | 1  | 1   | 0   | 1  | 1   | 1  | 1   | 0   | 0    | 0    | 0   | 0  | 0    | 0    | Α  |
| 134 | part. | 1   | 0  | 1   | 0   | 0                | 0           | 0   | 1   | 0       | 1   | 1       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 1  | 1   | 0   | 1  | 0   | 0  | 0   | 0   | 0    | 1    | 0   | 0  | 1    | 0    | Α  |
| 135 | nart. | 0   | 0  | 0   | 0   | 0                | 0           | 0   | 0   | 0       | 0   | 0       | 0                       | 0   | 0           | 0                                   | 0               | 0                 | 0                                       | 0  | 0   | 0   | 0  | 0   | 0  | 0   | 0   | 0    | 0    | 0   | 0  | 0    | 0    | Α  |

**Table 4:** Summary of mooring recovery and deployment information. Positions and depths are at the estimated landing sites (i.e. allowing for anchor 'dragback'). Depths are corrected for local sound velocity. For recoveries, 'release time' is the time release command was sent to acoustic release at the base of the mooring; for deployments, 'release time' is the time final component released from trawl deck. Suffixes '4' and '5' in mooring names refer respectively to the 4th and 5th deployment seasons in the SAZ program.

| Mooring                      | pos                                     | sition                         | depth            | release time<br>(UTC)                |             | (decimal<br>rees)          |
|------------------------------|-----------------------------------------|--------------------------------|------------------|--------------------------------------|-------------|----------------------------|
| RECOVERI<br>SAZB_4<br>SAZC_4 | <b>'ES</b><br>46° 54.3'S<br>53° 44.47'S | 142° 02.7'E<br>141° 45.22'E    | 4600 m<br>2120 m | 1935, 02/11/2001<br>0030, 13/11/2001 |             | 142.045°E<br>141.7537°E    |
| DEPLOYM                      |                                         |                                |                  |                                      |             |                            |
| SAZB_5                       | 46° 47.442'S                            | 142° 02.430'E                  | 4600 m           | 0407, 04/11/2001                     | 46.79070°S  | 142.04050°E                |
| SAZC_5<br>SAZF 5             |                                         | 141° 45.780′E<br>139° 53.970'E | 2040 m<br>4393 m | 0009, 14/11/2001<br>0249, 20/11/2001 |             | 141.76300°E<br>139.89950°E |
| 5/ (21 _5                    | 00 1111505                              | 133 33.370 E                   | 1333 111         | 02 13, 20, 11, 2001                  | 00.7 1050 5 | 133.03330 E                |

**Table 5:** Principal investigators (\*=cruise participant) for CTD water sampling programs.

| Measurement                          | Name             | Affiliation                              |
|--------------------------------------|------------------|------------------------------------------|
| CTD, salinity, $O_2$ , nutrients     | *Steve Rintoul   | CSIRO                                    |
| CFCs, CCl <sub>4</sub>               | *Mark Warner     | University of Washington                 |
| DIC, alkalinity                      | *Bronte Tilbrook | CSIRO                                    |
| DMS/DMSP/DMSO                        | *Jack Di Tullio  | Grice Marine Laboratory, South Carolina  |
| DMS/DMSP                             | *Graham Jones    | Southern Cross University                |
| halocarbons                          | James Butler     | NOAA                                     |
| barium, barite, NH <sub>3</sub>      | *Frank Dehairs   | Vrije Universiteit, Brussels             |
| $\delta^{30}$ Si                     | *Damien Cardinal | Royal Museum for Central Africa, Belgium |
| DOC,POC,PSi                          | *Tom Trull       | Antarctic CRC                            |
| <sup>15</sup> N-N0 <sub>3</sub>      | Danny Sigman     | Princeton University                     |
| <sup>18</sup> O of dissolved oxygen  | Michael Bender   | Princeton University                     |
| <sup>234</sup> Th                    | *Ken Buesseler   | WHOI                                     |
|                                      | *Nicolas Savoye  | Vrije Universiteit, Brussels             |
| <sup>230</sup> Th, <sup>231</sup> Pa | Roger Francois   | WHOI                                     |
| iron (sampled from stern)            | *Peter Sedwick   | Bermuda Biological Station for Research  |
| bacterial and primary produc-        | *Brian Griffiths | CSIRO                                    |
| tion, microzooplankton grazing       | )                |                                          |
| phytoplankton community structure    | *Phil Boyd       | NIWA                                     |
| phytoplankton                        | Simon Wright     | Antarctic Division                       |
|                                      | *Harvey Marchant | Antarctic Division                       |
| bacterial groups                     | Guy Abel         | University of Tasmania                   |

**Table 6:** Scientific personnel (cruise participants) for cruise AU0103.

| Edward Abraham<br>Margaret Appleton<br>Andrew Bowie<br>Philip Boyd<br>Stephen Bray<br>Ken Buesseler | phytoplankton community structure<br>organic carbon team<br>iron<br>phytoplankton community structure<br>CTD hydrochemistry, moorings<br>thorium | NIWA<br>Antarctic CRC<br>Antarctic CRC<br>University of Otago<br>Antarctic CRC<br>Dept. of Marine Chemistry and Geochemistry,<br>WHOI |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Damien Cardinal                                                                                     | barium, $NH_3$ , $\delta^{30}Si$ , thorium                                                                                                       | Royal Museum for Central Africa, Belgium                                                                                              |
| Alexis Chaigneau                                                                                    | CTD                                                                                                                                              | Laboratory of Geophysical Studies and Spatial<br>Oceanography, Toulouse                                                               |
| Kelvin Cope                                                                                         | electronics                                                                                                                                      | Antarctic Division                                                                                                                    |
| Guido Corno                                                                                         | organic carbon team                                                                                                                              | Antarctic CRC                                                                                                                         |
| George Cresswell                                                                                    | CTD, moorings                                                                                                                                    | CSIRO                                                                                                                                 |
| Clive Crossley                                                                                      | flow cytometry                                                                                                                                   | Antarctic CRC                                                                                                                         |
| Clodagh Moy                                                                                         | CTD, hydrochemistry                                                                                                                              | Antarctic CRC                                                                                                                         |

College of Marine Studies, University of Delaware

School of Plant Science, University of Tasmania

Hollings Marine Laboratory, South Carolina

Bermuda Biological Station for Research

The Harrison Lab, University of British Columbia

National Institute of Polar Research, Japan

Dept. of Oceanography, Dalhousie University

School of Environmental Sciences, University of

#### Table 6: continued

Andrew Davidson phytoplankton Antarctic Division

barium, NH<sub>3</sub>,  $\delta^{30}$ Si, thorium Frank Dehairs Vrije Universiteit, Brussels

Jack Di Tullio DMS/DMSP/DMSO Grice Marine Laboratory, South Carolina

Esther Fischer DMS/DMSP Southern Cross University CIMAS, University of Miami Kelly Goodwin halocarbons

**Brian Griffiths** primary production, grazing **CSIRO** 

Clint Hare College of Marine Studies, University of Delaware Iron

Brian Hunt CPR, zooplankton nets Antarctic Division

Dave Hutchins Iron College of Marine Studies, University of Delaware

**CSIRO** 

**CSIRO** 

**CSIRO** 

NIWA

**CSIRO** 

**CSIRO** 

University of Otago

Vrije Universiteit, Brussels

Antarctic CRC

Antarctic CRC

Antarctic CRC

Antarctic Division

Antarctic Division

Antarctic CRC

Antarctic CRC

Plymouth

PMEL, NOAA

**CSIRO** Neale Johnston CTD hydrochemistry Graham Jones DMS/DMSP Southern Cross University Bronwyn Kimber sea ice CODES, University of Tasmania CIRES, University of Colorado Dan King halocarbons Alex Kozyr DIC, alkalinity Oak Ridge National Laboratory, U.S.

Antarctic Division Ruth Lawless dotzapper Antarctic CRC Sophie Le Roux organic carbon team Carsten Lemmen organic carbon team Antarctic CRC

Sandric Leong light absorption of phytoplankton Soka University, Japan Harvey Marchant voyage leader, phytoplankton Antarctic Division

Richard Matear DIC, alkalinity Fred Menzia CFC

Daniela Mersch organic carbon team

Antarctic CRC Gordon Mor Antarctic Division doctor Angus Munro sea ice Antarctic CRC

light absorption of phytoplankton Soka University, Japan Nobuaki Ohi School of Agricultural Science, University of

Andrew Pankowski sea ice

Tasmania Naomi Petrie organic carbon team Antarctic CRC communications Peter Pokorny Antarctic Division

Linda Popels Iron

Mark Pretty DIC, alkalinity

James Reid sea ice

Malcolm Reid phytoplankton community structure Steve Rintoul CTD, chief scientist Sarah Riseman DMS/DMSP/DMSO

Mark Rosenberg CTD, moorings Tilla Roy CTD

bacterial production Karl Safi barium,  $NH_3$ ,  $\delta^{30}Si$ , thorium Nicolas Savoye

Bryan Scott computing

iron

Peter Sedwick

Jenny Skerratt microbial processes

Serguei Sokolov CTD

Robert Strzepek phytoplankton community structure

Kunio Takahashi copepods Paul Thomson phytoplankton Bronte Tilbrook DIC, alkalinity Ryszard Tokarczyk halocarbons

Lianos Triantafillos squid

Tom Trull organic carbon team leader

Simon Ussher Iron

Rick Van Den Enden phytoplankton, deputy voyage leader Robert Van Hale

Tessa Vance DMS/DMSP Tony Veness electronics

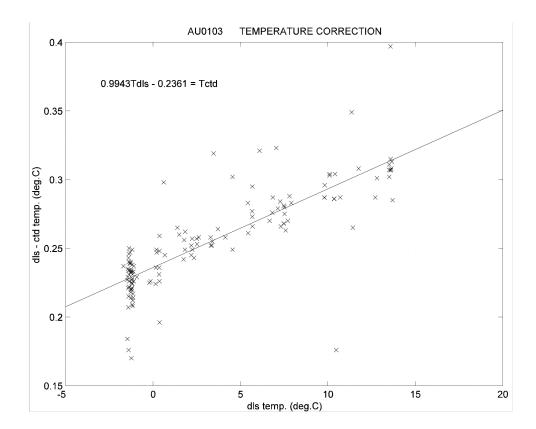
Robert Walsh phytoplankton community structure

Mark Warner CFC

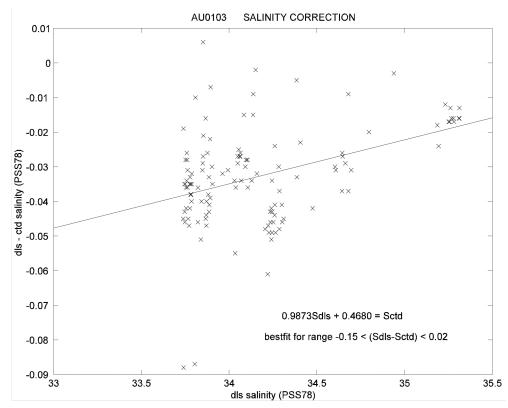
phytoplankton community structure

University of Otago Southern Cross University

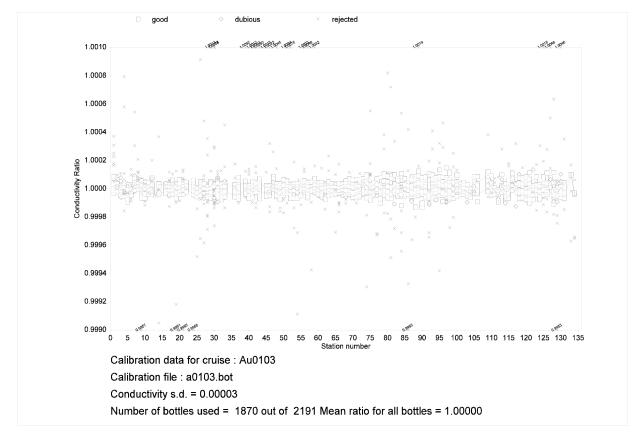
Antarctic Division DPIWE, Tasmania


Antarctic Division

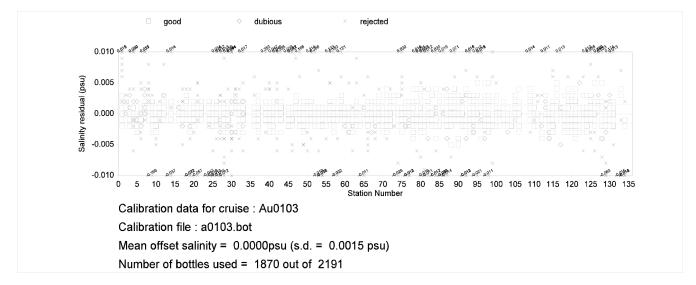
School of Oceanography, University of


Washington AOML, NOAA

Shari Yvon-Lewis halocarbons





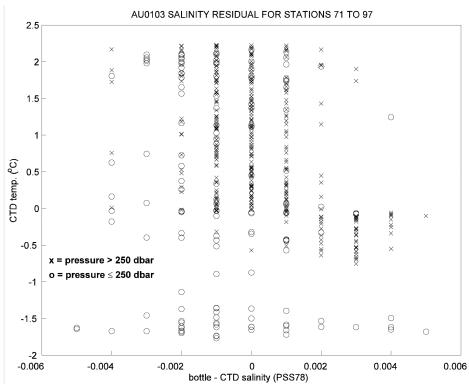






**Figure 4a and b:** Comparison between (a) CTD and underway temperature data, and (b) CTD and underway salinity data, including bestfit lines. Note: dls refers to underway data.

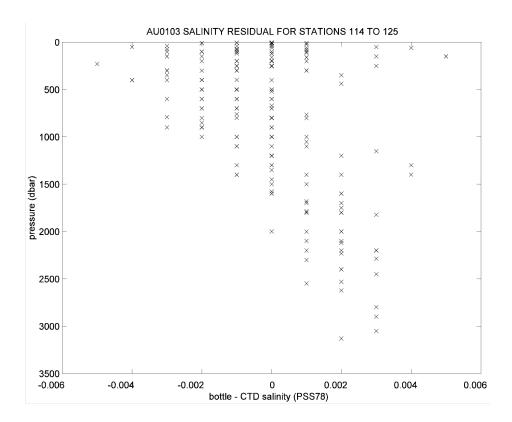



**Figure 5:** Conductivity ratio  $c_{btl}/c_{cal}$  versus station number for cruise AU0103. The solid line follows the mean of the residuals for each station; the broken lines are  $\pm$  the standard deviation of the residuals for each station.  $c_{cal}$  = calibrated CTD conductivity from the CTD upcast burst data;  $c_{btl}$  = 'in situ' Niskin bottle conductivity, found by using CTD pressure and temperature from the CTD upcast burst data in the conversion of Niskin bottle salinity to conductivity.




**Figure 6:** Salinity residual ( $s_{btl}$  -  $s_{cal}$ ) versus station number for cruise AU0103. The solid line is the mean of all the residuals; the broken lines are  $\pm$  the standard deviation of all the residuals.  $s_{cal}$  = calibrated CTD salinity;  $s_{btl}$  = Niskin bottle salinity value.



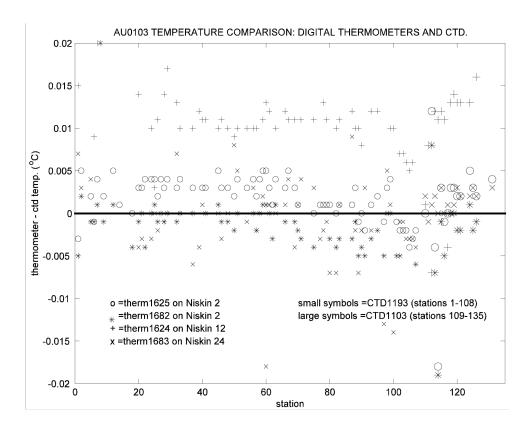




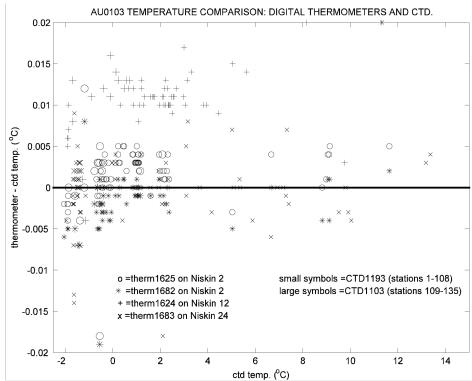



**Figure 7a and b:** Salinity residual versus (a) pressure, and (b) temperature, for stations 71 to 97. Note that only data with quality flag 1 (see Appendix 2 for definition) are plotted.

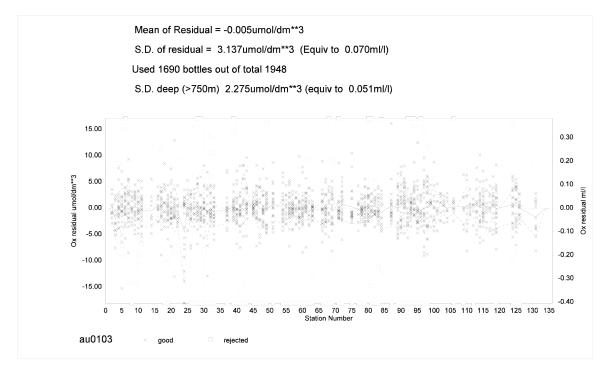
(c)




(d)




**Figure 7c and d:** Salinity residual versus (c) pressure, and (d) temperature, for stations 114 to 125. Note that only data with quality flag 1 (section Appendix 2 for definition) are plotted.










**Figure 8a and b:** Comparison between digital reversing thermometers and CTD platinum temperature for cruise AU0103: temperature difference versus (a) station number, and (b) CTD temperature.



**Figure 9:** Dissolved oxygen residual  $(o_{btl} - o_{cal})$  versus station number for cruise AU0103. The solid line follows the mean residual for each station; the broken lines are  $\pm$  the standard deviation of the residuals for each station.

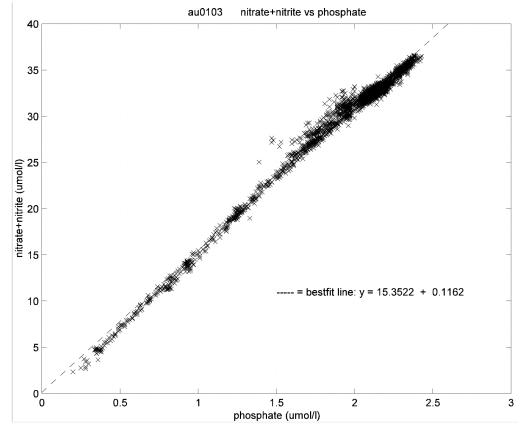
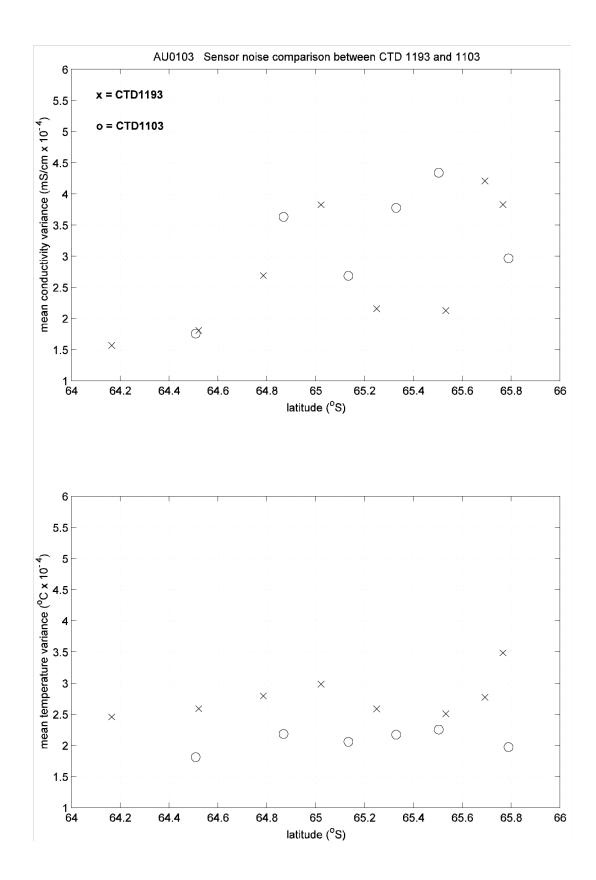




Figure 10: Nitrate+nitrite versus phosphate data for AU0103.



**Figure 11:** Conductivity and temperature signal noise for CTDs 1193 and 1103.

**Table 7:** Calibration coefficients and calibration dates for CTD serial numbers 1193 and 1103 (unit numbers 5 and 7 respectively) used during cruise AU0103. Note that platinum temperature calibrations are for the ITS-90 scale.

| coefficient                             | value of coefficient               | coefficient                                            | value of coefficient                                    |  |  |  |
|-----------------------------------------|------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--|--|--|
| (stations 1-10                          |                                    | CTD serial number 1103 (unit no. 7) (stations 109-135) |                                                         |  |  |  |
| pressure calibration                    |                                    | pressure calibration coefficients                      |                                                         |  |  |  |
| CSIRO Calibration                       | n Facility - 08/10/2001            | CSIRO Calibration                                      | n Facility - 03/10/2001                                 |  |  |  |
| pcal0                                   | -1.112466e+01                      | pcal0                                                  | -2.107754e+01                                           |  |  |  |
| pcal1                                   | 1.007841e-01                       | pcal1                                                  | 1.001927e-01                                            |  |  |  |
| pcal2                                   | 2.329940e-09                       | pcal2                                                  | 9.702446e-09                                            |  |  |  |
| pcal3                                   | -6.068648e-14                      | pcal3                                                  | -6.379487e-14                                           |  |  |  |
| pcal4                                   | 5.809276e-19                       | pcal4                                                  | 3.916767e-19                                            |  |  |  |
| platinum tempera<br>coefficients        | ture calibration                   | platinum tempera                                       | ature calibration coefficients                          |  |  |  |
| CSIRO Calibration                       | n Facility - 02/10/2001            | CSIRO Calibration                                      | n Facility – 12/10/2001                                 |  |  |  |
| Tcal0                                   | -5.448864e-02                      | Tcal0                                                  | 6.705048e-02                                            |  |  |  |
| Tcal1                                   | 4.989851e-04                       | Tcal1                                                  | 4.998226e-04                                            |  |  |  |
| Tcal2                                   | -1.960000e-12                      | Tcal2                                                  | 0.0                                                     |  |  |  |
| pressure tempera<br>coefficients        | ture calibration                   | pressure temperature calibration coefficients          |                                                         |  |  |  |
| CSIRO Calibration                       | n Facility - 08/10/2001            | CSIRO Calibration Facility - 03/10/2001                |                                                         |  |  |  |
| Tpcal0                                  | 8.43604e+01                        | Tpcal0                                                 | 9.09870e+01                                             |  |  |  |
| Tpcal1                                  | -3.15992e-04                       | Tpcal1                                                 | -4.16256e-04                                            |  |  |  |
| Tpcal2                                  | -3.25000e-08                       | Tpcal2                                                 | -3.01003e-08                                            |  |  |  |
| Tpcal3                                  | 0.0                                | Tpcal3                                                 | 0.0                                                     |  |  |  |
| Tpcal4                                  | 0.0                                | Tpcal4                                                 | 0.0                                                     |  |  |  |
| coefficients for te                     | mperature correction to            | coefficients for temperature correction to pressure    |                                                         |  |  |  |
| CSIRO Calibration F                     | acility - 08/10/2001               | CSIRO Calibration                                      | Facility - 03/10/2001                                   |  |  |  |
| $T_0$                                   | 20.00                              | $T_0$                                                  | 20.00                                                   |  |  |  |
| $S_1$                                   | -1.88557e-05                       | $S_1$                                                  | -1.40716e-05                                            |  |  |  |
| $S_2$                                   | -1.08758e-01                       | S <sub>2</sub>                                         | -2.54401e-02                                            |  |  |  |
| digitiser counts to<br>fluorescence cha | o voltage calibration for<br>annel |                                                        | o voltage calibration for<br>nnel (used CTD1193 values) |  |  |  |
| Aurora Australis -                      |                                    |                                                        |                                                         |  |  |  |
| f0                                      | -5.57687                           | f0                                                     | -5.57687                                                |  |  |  |
| f1                                      | 1.70179e-04                        | f1                                                     | 1.70179e-04                                             |  |  |  |
| f2                                      | 0.0                                | f2                                                     | 0.0                                                     |  |  |  |
|                                         |                                    |                                                        |                                                         |  |  |  |

**Table 8:** Surface pressure offsets. \*\* indicates value estimated from manual inspection of data.

| stn<br>no. | surface p<br>offset(dbar) |
|------------|---------------------------|------------|---------------------------|------------|---------------------------|------------|---------------------------|------------|---------------------------|
| 1          | 0.94                      | 28         | -0.01                     | 55         | -0.47                     | 82         | 0.20**                    | 109        | 0.00                      |
| 2          | 1.00                      | 29         | -0.40**                   | 56         | 0.41                      | 83         | -0.29                     | 110        | 0.79                      |
| 3          | 0.53                      | 30         | 0.19                      | 57         | -0.03                     | 84         | -0.48                     | 111        | 1.00                      |
| 4          | 0.52                      | 31         | 0.22                      | 58         | 0.02                      | 85         | 0.74                      | 112        | 0.50                      |
| 5          | 0.39                      | 32         | 0.38                      | 59         | -0.11                     | 86         | 0.31                      | 113        | 0.77                      |
| 6          | 0.11                      | 33         | 0.32                      | 60         | -0.11                     | 87         | 0.00**                    | 114        | 0.85                      |
| 7          | 0.21                      | 34         | 0.15                      | 61         | -0.69                     | 88         | 0.22                      | 115        | 0.98                      |
| 8          | 0.75                      | 35         | 0.27                      | 62         | 0.30**                    | 89         | -0.06                     | 116        | 0.46                      |
| 9          | 0.90                      | 36         | 0.73                      | 63         | 0.08                      | 90         | 0.01                      | 117        | 0.59                      |
| 10         | 0.83                      | 37         | 0.06                      | 64         | -0.17                     | 91         | 0.17                      | 118        | 0.99                      |
| 11         | 0.18                      | 38         | -0.08                     | 65         | -0.67                     | 92         | 0.06                      | 119        | 0.91                      |
| 12         | 0.15                      | 39         | 0.09                      | 66         | -0.34                     | 93         | -0.20                     | 120        | 0.40                      |
| 13         | 0.52                      | 40         | 0.25                      | 67         | -0.36                     | 94         | 0.14                      | 121        | 0.23                      |
| 14         | 0.77                      | 41         | 0.35                      | 68         | 0.41                      | 95         | -0.16                     | 122        | 0.36                      |
| 15         | 0.03                      | 42         | 0.00                      | 69         | 0.42                      | 96         | -0.04                     | 123        | 1.05                      |
| 16         | 0.15                      | 43         | 0.52                      | 70         | -0.17                     | 97         | 0.47                      | 124        | 0.65                      |
| 17         | 0.15                      | 44         | 0.21                      | 71         | -0.36                     | 98         | 0.02                      | 125        | 0.24                      |
| 18         | 0.26                      | 45         | -0.33                     | 72         | -0.15                     | 99         | -0.40                     | 126        | -0.12                     |
| 19         | 0.51                      | 46         | -0.89                     | 73         | 0.15                      | 100        | -0.20**                   | 127        | 0.93                      |
| 20         | -0.57                     | 47         | 0.23                      | 74         | 0.60                      | 101        | -0.05                     | 128        | 0.55                      |
| 21         | 0.03                      | 48         | -0.42                     | 75         | 0.46                      | 102        | 0.35                      | 129        | 0.00                      |
| 22         | -0.09                     | 49         | 0.46                      | 76         | -0.44                     | 103        | 0.33                      | 130        | 0.25                      |
| 23         | -0.11                     | 50         | -0.05                     | 77         | 0.04                      | 104        | 0.86                      | 131        | 0.74                      |
| 24         | -0.20**                   | 51         | -0.22                     | 78         | -0.29                     | 105        | 0.43                      | 132        | 0.66                      |
| 25         | 0.15                      | 52         | 0.15                      | 79         | -0.44                     | 106        | 0.36                      | 133        | -0.35                     |
| 26         | 0.27                      | 53         | -0.56                     | 80         | 0.09                      | 107        | -0.20**                   | 134        | -0.27                     |
| 27         | 0.42                      | 54         | 0.05                      | 81         | -0.47                     | 108        | -0.30**                   | 135        | 0.23                      |

**Table 9:** CTD conductivity calibration coefficients.  $F_1$ ,  $F_2$  and  $F_3$  are respectively conductivity bias, slope and station-dependent correction calibration terms. n is the number of samples retained for calibration in each station grouping;  $\sigma$  is the standard deviation of the conductivity residual for the n samples in the station grouping.

| stn grouping | $F_1$           | F <sub>2</sub> | F <sub>3</sub>  | n   | σ        |
|--------------|-----------------|----------------|-----------------|-----|----------|
| 001 to 007   | -0.12400843E-01 | 0.96693175E-03 | -0.12678197E-07 | 94  | 0.001331 |
| 008 to 013   | -0.14229483E-01 | 0.96688131E-03 | 0.45234260E-08  | 81  | 0.001186 |
| 014 to 017   | -0.51762480E-02 | 0.94845242E-03 | -0.28958816E-07 | 35  | 0.000878 |
| 018 to 047   | -0.11944275E-01 | 0.94817109E-03 | 0.22435385E-08  | 400 | 0.000996 |
| 048 to 062   | 0.96277611E-03  | 0.94791325E-03 | -0.65411185E-09 | 258 | 0.000843 |
| 063 to 068   | -0.87553383E-02 | 0.94830642E-03 | -0.19967568E-08 | 89  | 0.000679 |
| 069 to 076   | 0.21653981E-02  | 0.94790089E-03 | -0.85898836E-09 | 136 | 0.000976 |
| 077 to 083   | 0.27664169E-01  | 0.94705848E-03 | 0.39321052E-10  | 132 | 0.001127 |
| 084 to 099   | 0.35267267E-01  | 0.94685326E-03 | -0.52840211E-09 | 279 | 0.001360 |
| 100 to 108   | 0.30957091E-01  | 0.94556130E-03 | 0.13561741E-07  | 66  | 0.001069 |
| 109 to 119   | 0.30445228E-01  | 0.10055224E-02 | -0.11314836E-08 | 131 | 0.001265 |
| 120 to 129   | 0.23654117E-01  | 0.10055005E-02 | 0.79152735E-09  | 141 | 0.001313 |
| 130 to 135   | -0.97232207E-02 | 0.10041337E-02 | 0.19756780E-07  | 24  | 0.001586 |

**Table 10:** Station-dependent-corrected conductivity slope term  $(F_2 + F_3 \cdot N)$ , for station number N, and  $F_2$  and  $F_3$  the conductivity slope and station-dependent correction calibration terms respectively.

| stn<br>nbr | $(F_2 + F_3 . N)$ |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| 1          | 0.96691907E-03    | 35         | 0.94825236E-03    | 69         | 0.94784162E-03    | 103        | 0.94695816E-03    |
| 2          | 0.96690639E-03    | 36         | 0.94825458E-03    | 70         | 0.94784076E-03    | 104        | 0.94697172E-03    |
| 3          | 0.96689371E-03    | 37         | 0.94825679E-03    | 71         | 0.94783990E-03    | 105        | 0.94698528E-03    |
| 4          | 0.96688103E-03    | 38         | 0.94825901E-03    | 72         | 0.94783905E-03    | 106        | 0.94699885E-03    |
| 5          | 0.96686836E-03    | 39         | 0.94826122E-03    | 73         | 0.94783819E-03    | 107        | 0.94701241E-03    |
| 6          | 0.96685568E-03    | 40         | 0.94826344E-03    | 74         | 0.94783733E-03    | 108        | 0.94702597E-03    |
| 7          | 0.96684300E-03    | 41         | 0.94826566E-03    | 75         | 0.94783647E-03    | 109        | 0.10053662E-02    |
| 8          | 0.96691750E-03    | 42         | 0.94826787E-03    | 76         | 0.94783561E-03    | 110        | 0.10053654E-02    |
| 9          | 0.96692202E-03    | 43         | 0.94827009E-03    | 77         | 0.94706151E-03    | 111        | 0.10053647E-02    |
| 10         | 0.96692654E-03    | 44         | 0.94827230E-03    | 78         | 0.94706155E-03    | 112        | 0.10053639E-02    |
| 11         | 0.96693107E-03    | 45         | 0.94827452E-03    | 79         | 0.94706159E-03    | 113        | 0.10053631E-02    |
| 12         | 0.96693559E-03    | 46         | 0.94827674E-03    | 80         | 0.94706163E-03    | 114        | 0.10053624E-02    |
| 13         | 0.96694011E-03    | 47         | 0.94827895E-03    | 81         | 0.94706166E-03    | 115        | 0.10053616E-02    |
| 14         | 0.94804700E-03    | 48         | 0.94788185E-03    | 82         | 0.94706170E-03    | 116        | 0.10053608E-02    |
| 15         | 0.94801804E-03    | 49         | 0.94788120E-03    | 83         | 0.94706174E-03    | 117        | 0.10053600E-02    |
| 16         | 0.94798908E-03    | 50         | 0.94788055E-03    | 84         | 0.94680887E-03    | 118        | 0.10053593E-02    |
| 17         | 0.94796012E-03    | 51         | 0.94787989E-03    | 85         | 0.94680835E-03    | 119        | 0.10053585E-02    |
| 18         | 0.94821469E-03    | 52         | 0.94787924E-03    | 86         | 0.94680782E-03    | 120        | 0.10055955E-02    |
| 19         | 0.94821691E-03    | 53         | 0.94787858E-03    | 87         | 0.94680729E-03    | 121        | 0.10055963E-02    |
| 20         | 0.94821913E-03    | 54         | 0.94787793E-03    | 88         | 0.94680676E-03    | 122        | 0.10055971E-02    |
| 21         | 0.94822134E-03    | 55         | 0.94787727E-03    | 89         | 0.94680623E-03    | 123        | 0.10055979E-02    |
| 22         | 0.94822356E-03    | 56         | 0.94787662E-03    | 90         | 0.94680570E-03    | 124        | 0.10055987E-02    |
| 23         | 0.94822577E-03    | 57         | 0.94787597E-03    | 91         | 0.94680518E-03    | 125        | 0.10055995E-02    |
| 24         | 0.94822799E-03    | 58         | 0.94787531E-03    | 92         | 0.94680465E-03    | 126        | 0.10056003E-02    |
| 25         | 0.94823020E-03    | 59         | 0.94787466E-03    | 93         | 0.94680412E-03    | 127        | 0.10056011E-02    |
| 26         | 0.94823242E-03    | 60         | 0.94787400E-03    | 94         | 0.94680359E-03    | 128        | 0.10056018E-02    |
| 27         | 0.94823464E-03    | 61         | 0.94787335E-03    | 95         | 0.94680306E-03    | 129        | 0.10056026E-02    |
| 28         | 0.94823685E-03    | 62         | 0.94787270E-03    | 96         | 0.94680253E-03    | 130        | 0.10067021E-02    |
| 29         | 0.94823907E-03    | 63         | 0.94820530E-03    | 97         | 0.94680201E-03    | 131        | 0.10067219E-02    |
| 30         | 0.94824128E-03    | 64         | 0.94820372E-03    | 98         | 0.94680148E-03    | 132        | 0.10067416E-02    |
| 31         | 0.94824350E-03    | 65         | 0.94820215E-03    | 99         | 0.94680095E-03    | 133        | 0.10067614E-02    |
| 32         | 0.94824571E-03    | 66         | 0.94820057E-03    | 100        | 0.94691748E-03    | 134        | 0.10067812E-02    |
| 33         | 0.94824793E-03    | 67         | 0.94819899E-03    | 101        | 0.94693104E-03    | 135        | 0.10068009E-02    |
| 34         | 0.94825015E-03    | 68         | 0.94819742E-03    | 102        | 0.94694460E-03    |            |                   |

32

**Table 11:** CTD raw data scans deleted during data processing. For raw scan number ranges, the lowest and highest scan numbers are not included in the action (except for scan 1).

| station no.<br>1, upcast<br>4, upcast<br>7, upcast<br>8, upcast                                           | raw scan nos.<br>1918-1920<br>2771-3, 2877-9<br>4173-6, 4212-4<br>644-6, 1519-21, 1854-7, 1874-81,<br>1935-9, 3519-21, 3569-71, 3586-9,<br>3605-7, 3631-3, 3654-6 | reason<br>P spike<br>P spike<br>P spike<br>P spike                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24, downcast<br>29, downcast                                                                              | 1-450<br>1-830                                                                                                                                                    | CTD deck unit not warmed up<br>CTD deck unit not warmed up                                                                                                              |
| 62, downcast<br>82, downcast<br>87, downcast<br>95, upcast<br>107,downcast<br>108,downcast<br>128, upcast | 1-1000<br>1-520<br>1-1300<br>5348-52<br>1-4600<br>1-1500<br>4156-9                                                                                                | CTD deck unit not warmed up CTD deck unit not warmed up CTD deck unit not warmed up P spike hypersaline water in sensor cover hypersaline water in sensor cover P spike |

**Table 12:** Missing data points in 2 dbar-averaged files. '1' indicates missing data for the indicated parameters: T=temperature; S=salinity,  $\sigma_T$ , specific volume anomaly and geopotential anomaly; O=oxygen; F=fluorescence.

| station no. | pressure (dbar)<br>where data missing | Т | S | 0      | F |
|-------------|---------------------------------------|---|---|--------|---|
| 1           | whole stn                             |   |   | 1      |   |
| 6           | 2252-2352                             |   |   | 1      | 1 |
| 6           | 2354-3246                             |   |   |        | 1 |
| 7           | 1970-2066                             |   |   | 1      | 1 |
| 7           | 2068-2898                             |   |   |        | 1 |
| 11          | whole stn                             |   |   |        | 1 |
| 12<br>13    | whole stn                             |   |   | 1<br>1 | 1 |
| 15<br>15    | whole stn                             |   |   | 1      | 1 |
| 16          | whole stn<br>whole stn                |   |   | 1      | 1 |
| 17          | whole stn                             |   |   |        | 1 |
| 20          | 2344-2348                             |   |   | 1      | 1 |
| 23          | whole stn                             |   |   | 1      |   |
| 24          | 4040-4060                             |   |   | 1      |   |
| 28          | 180-184                               |   | 1 | 1      |   |
| 34          | whole stn                             |   |   | 1      |   |
| 35          | whole stn                             |   |   | 1      |   |
| 36          | whole stn                             |   |   | 1      |   |
| 38          | whole stn                             |   |   | 1      |   |
| 44          | whole stn                             |   |   | 1      |   |
| 50          | whole stn                             |   |   | 1      |   |
| 52          | whole stn                             |   |   | 1      |   |
| 53          | whole stn                             |   |   | 1      |   |
| 64          | whole stn                             |   |   | 1      |   |
| 65          | whole stn                             |   |   | 1      |   |
| 70          | whole stn                             |   |   | 1      |   |
| 73          | whole stn                             |   |   | 1      |   |
| 74          | whole stn                             |   |   | 1      |   |
| 76<br>76    | whole stn                             |   |   | 1      |   |
| 76          | 1672-1674                             |   | 1 |        |   |
| 85          | whole stn                             |   |   | 1      |   |

Table 12: (continued)

| station no. | pressure (dbar)<br>where data missing | Т | S | 0 | F |
|-------------|---------------------------------------|---|---|---|---|
| 86          | whole stn                             |   |   | 1 |   |
| 88          | whole stn                             |   |   | 1 |   |
| 89          | 2-48                                  |   |   |   | 1 |
| 90          | 50-52                                 |   | 1 | 1 |   |
| 100         | 2-4                                   | 1 | 1 | 1 | 1 |
| 105         | whole stn                             |   |   | 1 |   |
| 107         | whole stn                             |   | 1 | 1 |   |
| 108         | whole stn                             |   | 1 | 1 |   |
| 120         | whole stn                             |   |   | 1 |   |
| 121         | whole stn                             |   |   | 1 |   |
| 122         | whole stn                             |   |   | 1 |   |
| 123         | whole stn                             |   |   | 1 |   |
| 125         | whole stn                             |   |   |   | 1 |
| 126         | whole stn                             |   |   |   | 1 |
| 127         | whole stn                             |   |   | 1 |   |
| 128         | whole stn                             |   |   | 1 |   |
| 129         | whole stn                             |   |   | 1 |   |
| 130         | whole stn                             |   |   | 1 |   |
| 132         | whole stn                             |   |   | 1 |   |
| 133         | whole stn                             |   |   | 1 |   |
| 134         | whole stn                             |   |   | 1 |   |
| 135         | whole stn                             |   |   | 1 |   |
|             |                                       |   |   |   |   |

**Table 13:** 2 dbar averages interpolated from surrounding 2 dbar values, for the indicated parameters: T=temperature; S=salinity,  $\sigma_T$ , specific volume anomaly and geopotential anomaly; F=fluorescence.

| station<br>no. | interpolated 2 dbar values        | parameters<br>interpolated |
|----------------|-----------------------------------|----------------------------|
| 6              | 1066, 1168                        | 0                          |
| 6              | 2254-2256                         | T, S                       |
| 7              | 1304, 1410, 1458, 1466-1468, 1532 | 0                          |
| 7              | 1970-1972, 1986-1988              | T, S                       |
| 30             | 2634                              | T, S, 0                    |
| 40             | 2694                              | T, S, 0                    |
| 45             | 1154                              | T, S, 0                    |
| 51             | 1464                              | T, S, O                    |
| 60             | 2462                              | T, S, O                    |
| 61             | 2280                              | T, S, O                    |
| 71             | 1256, 2418                        | T, S, O                    |
| 78             | 2368                              | T, S, O                    |
|                |                                   |                            |

**Table 14:** Suspect 2 dbar averages for the indicated parameters: T=temperature; S=salinity,  $\sigma_T$ , specific volume anomaly and geopotential anomaly; O=oxygen. \* = general caution required, due to frequent transient sensor errors when the CTD enters the water.

| station no.   | Questionable 2 dbar value(dbar) | parameters |
|---------------|---------------------------------|------------|
| 16            | 4000-4012                       | 0          |
| *all stations | 2-4                             | S          |
| *all stations | 2-20                            | 0          |

Table 15: Questionable nutrient sample values (not deleted from bottle data file).

| PHOS              | SPHATE              | NIT               | RATE                | SIL               | SILICATE            |  |  |
|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------|--|--|
| station<br>number | rosette<br>position | station<br>number | rosette<br>position | station<br>number | rosette<br>position |  |  |
| 29                | whole stn           |                   |                     | 42                | 4                   |  |  |
|                   |                     |                   |                     | 43                | 4                   |  |  |
|                   |                     |                   |                     | 45                | 3                   |  |  |
| 69                | 4                   |                   |                     |                   |                     |  |  |
|                   |                     |                   |                     | 72                | 11                  |  |  |
|                   |                     | 78                | 12                  |                   |                     |  |  |
|                   |                     | 97                | 9                   |                   |                     |  |  |
| 113               | whole stn           | 113               | whole stn           |                   |                     |  |  |
| 117               | whole stn           |                   |                     |                   |                     |  |  |
| 118               | whole stn           |                   |                     |                   |                     |  |  |
| 122               | whole stn           | 122               | whole stn           |                   |                     |  |  |
|                   |                     |                   |                     |                   |                     |  |  |
| 123               | whole stn           | 123               | whole stn           |                   |                     |  |  |
| 124               | whole stn           | 124               | whole stn           |                   |                     |  |  |

Table 16: Digital reversing protected thermometers used: serial numbers are listed.

stations 1 to 135 1683 on pos. 24 1624 on pos. 12 1625, 1682 on pos. 2

**Table 17:** CTD dissolved oxygen calibration coefficients.  $K_1$ ,  $K_2$ ,  $K_3$ ,  $K_4$ ,  $K_5$  and  $K_6$  are respectively oxygen current slope, oxygen sensor time constant, oxygen current bias, temperature correction term, weighting factor, and pressure correction term. dox is equal to  $2.8\sigma$  (for  $\sigma$  as defined in Rosenberg et al., 1995); n is the number of samples retained for calibration in each station or station grouping.

| Stn # | K <sub>1</sub> | K <sub>2</sub> | Kз     | $K_4$    | K <sub>5</sub> | K <sub>6</sub>             | dox     | n  |
|-------|----------------|----------------|--------|----------|----------------|----------------------------|---------|----|
| 2     | 6.912          | 4.00           | -0.684 | -0.03195 | 0.22430        | 0.17482E-04                | 0.12445 | 10 |
| 3     | 9.960          | 4.00           | -1.607 | -0.03173 | 0.71194        | 0.49421E-04                | 0.23750 | 12 |
| 4     | 9.475          | 4.00           | -1.474 | -0.03299 | 0.16668        | 0.57404E-04                | 0.17484 | 20 |
| 5     | 8.062          | 4.00           | -1.251 | -0.01867 | 0.83694        | 0.14405E-03                | 0.29252 | 21 |
| 6     | 8.129          | 9.00           | -1.251 | -0.02263 | 0.56242        | 0.14403E 03<br>0.13824E-03 | 0.16039 | 20 |
| 7     | 6.403          | 5.50           | -0.913 | -0.02203 | 0.46445        | 0.13324E-03<br>0.13388E-03 | 0.10039 | 21 |
| 8     | 6.115          | 5.50           | -0.513 | -0.01635 | 0.77336        | 0.66683E-04                | 0.24943 | 13 |
|       |                |                |        |          |                |                            |         |    |
| 9     | 9.205          | 8.50           | -1.498 | -0.02543 | 0.69864        | 0.16783E-03                | 0.16433 | 20 |
| 10    | 7.921          | 5.50           | -1.254 | -0.01550 | 0.64807        | 0.18216E-03                | 0.15138 | 20 |
| 11    | 7.960          | 9.50           | -1.213 | -0.01700 | 0.02057        | 0.13327E-03                | 0.18890 | 22 |
| 14    | 9.300          | 4.00           | -1.400 | -0.03600 | 0.75000        | 0.15000E-03                | 0.21524 | 9  |
| 16    | 9.052          | 8.00           | -1.442 | -0.02344 | 0.74671        | 0.14595E-03                | 0.12373 | 12 |
| 17    | 8.795          | 4.00           | -1.384 | -0.02407 | 0.74967        | 0.14314E-03                | 0.24080 | 21 |
| 18    | 8.700          | 7.00           | -1.200 | -0.03600 | 0.75000        | 0.15000E-03                | 0.23160 | 12 |
| 19    | 8.919          | 4.50           | -1.405 | -0.02321 | 0.25903        | 0.14130E-03                | 0.14356 | 21 |
| 20    | 8.585          | 4.00           | -1.333 | -0.02092 | 0.91733        | 0.14039E-03                | 0.19361 | 24 |
| 21    | 9.961          | 5.00           | -1.617 | -0.02732 | 0.33264        | 0.14976E-03                | 0.27909 | 20 |
| 22    | 7.600          | 4.00           | -0.746 | -0.04166 | 0.01409        | 0.21553E-04                | 0.21020 | 14 |
| 24    | 9.485          | 5.50           | -1.534 | -0.02118 | 0.63844        | 0.15718E-03                | 0.15158 | 16 |
| 25    | 8.130          | 4.50           | -1.043 | -0.03220 | 0.67170        | 0.10759E-03                | 0.16108 | 12 |
| 26    | 8.067          | 4.50           | -1.222 | -0.01272 | 0.68518        | 0.13136E-03                | 0.18858 | 20 |
| 27    | 6.358          | 9.00           | -0.581 | -0.03279 | 0.90211        | 0.34873E-04                | 0.12788 | 12 |
| 28    | 10.035         | 4.00           | -1.590 | -0.03837 | 0.51531        | 0.12646E-03                | 0.19962 | 20 |

Table 17 (continued)

| Stn #      | K <sub>1</sub>  | K <sub>2</sub>    | K <sub>3</sub>   | $K_4$                | K <sub>5</sub>     | K <sub>6</sub>             | dox                | n        |
|------------|-----------------|-------------------|------------------|----------------------|--------------------|----------------------------|--------------------|----------|
| 29         | 10.096          | $4.\overline{50}$ | -1.602           | -0.03871             | 0.30482            | 0.12998E-03                | 0.15828            | 19       |
| 30         | 10.485          | 7.00              | -1.658           | -0.05009             | 0.16197            | 0.11585E-03                | 0.18770            | 20       |
| 31         | 7.500           | 9.00              | -0.900           | -0.03600             | 0.75000            | 0.15000E-03                | 0.33576            | 12       |
| 32         | 8.648           | 4.50              | -1.317           | -0.02529             | 0.09250            | 0.12518E-03                | 0.13736            | 20       |
| 33         | 10.123          | 4.00              | -1.611           | -0.03645             | 0.11694            | 0.13034E-03                | 0.16474            | 22       |
| 37         | 9.071           | 4.50              | -1.408           | -0.02180             | 0.04434            | 0.13173E-03                | 0.17548            | 21       |
| 39         | 10.438          | 4.00              | -1.678           | -0.04284             | 0.82360            | 0.13394E-03                | 0.10882            | 20       |
| 40         | 10.559          | 4.00              | -1.679           | -0.04517             | 0.90224            | 0.12215E-03                | 0.19414            | 21       |
| 41<br>42   | 8.142           | 4.00              | -1.218           | -0.00863             | 0.39981<br>0.75000 | 0.12397E-03                | 0.18955            | 22<br>12 |
| 42         | 9.400<br>7.372  | 10.00<br>4.50     | -1.400<br>-1.073 | -0.03600<br>-0.00119 | 0.73000            | 0.15000E-03<br>0.12954E-03 | 0.33467<br>0.21126 | 22       |
| 45         | 8.612           | 5.00              | -1.329           | -0.00113             | 0.72129            | 0.14126E-03                | 0.21120            | 22       |
| 46         | 8.172           | 4.00              | -1.238           | -0.00371             | 0.04397            | 0.13609E-03                | 0.07114            | 22       |
| 47         | 8.055           | 4.00              | -1.085           | -0.03461             | 0.56014            | 0.11641E-03                | 0.25505            | 13       |
| 48         | 8.655           | 4.50              | -1.299           | -0.02892             | 0.29307            | 0.11950E-03                | 0.15894            | 22       |
| 49         | 8.419           | 4.00              | -1.228           | -0.03023             | 0.20057            | 0.10052E-03                | 0.18601            | 21       |
| 51         | 8.928           | 4.00              | -1.355           | -0.02495             | 0.65819            | 0.11629E-03                | 0.20093            | 22       |
| 54         | 8.735           | 4.50              | -1.335           | -0.01811             | 0.19625            | 0.12976E-03                | 0.19223            | 20       |
| 55         | 9.294           | 4.50              | -1.416           | -0.04027             | 0.33908            | 0.17025E-03                | 0.14452            | 12       |
| 56         | 8.572           | 4.00              | -1.294           | -0.02030             | 0.97227            | 0.13192E-03                | 0.17817            | 22       |
| 57         | 8.907           | 9.00              | -1.369           | -0.01761             | 0.80135            | 0.13222E-03                | 0.10672            | 22       |
| 58         | 8.629           | 4.00              | -1.282           | -0.03729             | 0.59448            | 0.22645E-03                | 0.12402            | 12       |
| 59         | 9.107           | 4.50              | -1.395           | -0.01977             | 0.68997            | 0.12267E-03                | 0.18267            | 21       |
| 60         | 9.272           | 5.00              | -1.408           | -0.04199             | 0.85654            | 0.11579E-03                | 0.20739            | 22       |
| 61         | 9.239           | 4.50              | -1.394           | -0.04204             | 0.97849            | 0.10763E-03                | 0.16084            | 21       |
| 62         | 8.899           | 8.00              | -1.318           | -0.03501             | 0.33276            | 0.15050E-03                | 0.16301            | 10       |
| 63         | 9.468           | 10.00             | -1.495           | -0.00804             | 0.98786            | 0.14314E-03                | 0.08236            | 21       |
| 66         | 9.377           | 4.00              | -1.477           | -0.01029             | 0.35603            | 0.13980E-03                | 0.20116            | 23       |
| 67<br>68   | 8.866           | 6.50<br>7.00      | -1.302<br>-1.539 | -0.05731             | 0.38414            | 0.98862E-04                | 0.16167<br>0.17746 | 23       |
| 69         | 9.666<br>6.939  | 5.00              | -1.539<br>-0.789 | -0.05715<br>-0.10126 | 0.70477<br>0.65270 | 0.60321E-03<br>0.35727E-04 | 0.17746            | 12<br>21 |
| 71         | 8.420           | 7.00              | -1.220           | -0.10120             | 0.03270            | 0.10541E-03                | 0.20322            | 22       |
| 72         | 9.122           | 7.00              | -1.377           | -0.03124             | 0.62800            | 0.11280E-03                | 0.18488            | 20       |
| 75<br>75   | 9.600           | 4.00              | -1.514           | -0.00501             | 0.86646            | 0.11230E 03<br>0.14139E-03 | 0.20482            | 23       |
| 7 <i>7</i> | 8.135           | 4.50              | -1.118           | -0.05922             | 0.94853            | 0.36330E-04                | 0.14840            | 10       |
| 78         | 9.515           | 4.00              | -1.497           | -0.00887             | 0.79461            | 0.14148E-03                | 0.07669            | 23       |
| 79         | 7.588           | 4.50              | -0.996           | -0.06477             | 0.00080            | 0.72885E-04                | 0.15632            | 22       |
| 80         | 7.352           | 11.50             | -1.035           | -0.00070             | 0.32658            | 0.12954E-03                | 0.12665            | 22       |
| 81         | 8.085           | 10.00             | -1.123           | -0.04882             | 0.09085            | 0.74130E-04                | 0.09479            | 12       |
| 82         | 8.978           | 4.00              | -1.405           | -0.01642             | 0.69154            | 0.15006E-03                | 0.12764            | 18       |
| 83         | 9.033           | 7.50              | -1.400           | -0.00065             | 0.74911            | 0.14806E-03                | 0.12517            | 20       |
| 84         | 2.204           | 5.50              | 0.290            | -0.19604             | 0.31706            | 0.18185E-03                | 0.18605            | 11       |
| 87         | 9.579           | 4.00              | -1.516           | -0.00077             | 0.68334            | 0.15170E-03                | 0.24743            | 23       |
| 89         | 6.396           | 8.00              | -0.850           | -0.00155             | 0.70775            | 0.13731E-03                | 0.23418            | 23       |
| 90         | 6.692           | 5.50              | -0.805           | -0.06733             | 0.17446            | 0.61515E-04                | 0.23437            | 22       |
| 91         | 8.596           | 10.00             | -1.300           | -0.00013             | 0.60384            | 0.14717E-03                | 0.22087            | 23       |
| 92         | 8.347           | 5.00              | -1.146           | -0.04137             | 0.23471            | 0.14593E-04                | 0.18880            | 12       |
| 93         | 8.785           | 7.00              | -1.336           | -0.00028             | 0.80655<br>0.70964 | 0.14838E-03                | 0.09346<br>0.19109 | 22       |
| 94<br>95   | 9.532<br>11.468 | 7.00<br>6.00      | -1.495<br>-1.911 | -0.00075<br>-0.01291 | 0.70964            | 0.15125E-03<br>0.16731E-03 | 0.19109            | 20<br>22 |
| 95<br>96   | 6.409           | 7.00              | -0.729           | -0.01291             | 0.77412            | 0.10731E-03<br>0.10841E-04 | 0.23667            | 12       |
| 97         | 10.893          | 4.00              | -1.730           | -0.05168             | 0.57916            | 0.11548E-03                | 0.12173            | 22       |
| 98         | 5.557           | 4.00              | -0.552           | -0.09634             | 0.21763            | 0.52523E-04                | 0.31266            | 22       |
| 99         | 4.254           | 4.00              | -0.258           | -0.11902             | 0.29200            | 0.88222E-05                | 0.13664            | 11       |
| 100        | 9.801           | 6.00              | -1.498           | -0.02847             | 0.61098            | 0.31736E-03                | 0.24018            | 11       |
|            |                 |                   |                  |                      |                    |                            |                    |          |

Table 17 (continued)

| Stn # | K <sub>1</sub> | K <sub>2</sub> | K <sub>3</sub> | $K_4$    | K <sub>5</sub> | K <sub>6</sub> | dox     | n  |
|-------|----------------|----------------|----------------|----------|----------------|----------------|---------|----|
| 101   | 2.635          | 4.00           | 0.241          | -0.02757 | 0.75817        | 0.11936E-03    | 0.15955 | 8  |
| 102   | 3.075          | 6.50           | 0.006          | -0.13997 | 0.25742        | 0.14322E-03    | 0.13704 | 8  |
| 103   | 3.035          | 6.00           | -0.046         | -2.01790 | 0.47425        | 0.84172E-04    | 0.10521 | 8  |
| 104   | 4.181          | 4.00           | -0.099         | -0.04098 | 0.77975        | 0.10948E-03    | 0.11980 | 8  |
| 106   | 2.907          | 6.50           | 0.054          | -0.09441 | 0.24966        | 0.11797E-03    | 0.07823 | 10 |
| 109   | 6.697          | 5.50           | -0.869         | -0.04593 | 0.19676        | 0.33967E-03    | 0.20713 | 8  |
| 110   | 4.637          | 4.50           | -0.377         | -0.07659 | 0.22883        | 0.34088E-03    | 0.27937 | 10 |
| 111   | 4.401          | 5.00           | -0.267         | -0.06183 | 0.22249        | 0.93693E-04    | 0.10553 | 7  |
| 112   | 12.962         | 5.00           | -2.341         | -0.01813 | 0.37623        | 0.10047E-02    | 0.10977 | 6  |
| 113   | 3.121          | 9.00           | 0.000          | -0.11125 | 0.09626        | 0.32518E-04    | 0.23107 | 12 |
| 114   | 2.460          | 10.00          | 0.135          | -0.19090 | 0.22880        | 0.29243E-04    | 0.24413 | 19 |
| 115   | 5.027          | 6.00           | -0.416         | -0.08754 | 0.09586        | 0.57401E-04    | 0.18011 | 24 |
| 116   | 1.771          | 10.00          | 0.319          | -2.83890 | 0.48070        | 0.11283E-03    | 0.18744 | 8  |
| 117   | 3.608          | 4.00           | -0.117         | -0.23891 | 0.34958        | 0.56453E-04    | 0.17931 | 9  |
| 118   | 3.072          | 4.00           | 0.004          | -0.17242 | 0.26132        | 0.31683E-04    | 0.18890 | 14 |
| 119   | 7.111          | 9.00           | -0.901         | -0.03454 | 0.08394        | 0.11226E-03    | 0.22834 | 23 |
| 124   | 4.554          | 10.00          | -0.325         | -0.07275 | 0.08706        | 0.54370E-04    | 0.21894 | 19 |
| 125   | 5.296          | 10.00          | -0.580         | -0.00038 | 0.36196        | 0.13564E-03    | 0.22973 | 21 |
| 126   | 7.715          | 4.50           | -1.030         | -0.00271 | 0.75214        | 0.41146E-04    | 0.10723 | 13 |
| 131   | 0.087          | 6.00           | 1.011          | -0.31566 | 0.91766        | 0.21432E-04    | 0.23240 | 13 |

# Hydrochemistry cruise laboratory report

Clodagh Moy, Stephen Bray and Neale Johnston

This hydrochemistry was part of the CLIVAR program on Voyage 3 on the *Aurora Australis*. Seawater samples were analysed for salinity, nutrients (NO2+NO3, Si and P) and dissolved oxygen concentrations. Samples were collected from 135 stations in total, including 122 stations of a repeat north-south transect of the SR3 line (including 8 particle station sites) and a further 13 stations off the coast near the Mertz Glacier and across the continental shelf. Additional samples were analysed for some scientists on board, as described below. The methods used are described in the CRC hydrochemistry manual (Curran and Bray, 2003).

## Number of samples analysed

Salinities: 2288 (2246 samples for SR3 and particle stations)

Dissolved Oxygens: 2002

Nutrients: 2746 (2269 samples for SR3 and particle stations)

## A1.1 Salinity

Clodagh Moy and Neale Johnston analysed salinities over a 24-hour period each day in the wet lab. A Guildline Autosal salinometer SN 62549 was used. Ocean Scientific IAPSO standard seawater batches used to standardise the salinometer throughout the cruise are summarised in Table A1.1. Repeat standardisations (e.g. P137 measured against P137) showed no difference (i.e. 2R of < 0.00000) over 33 repeats during the cruise. P133 standards were also measured. They showed no difference, average being 0.0000 psu. Additional standards P140 were measured. They showed no difference, average being 0.0000 psu.

There were some problems controlling the temperature of the wet lab for a number of days during the cruise. The temperature ranged between 17 and 21 degrees. A PID temperature controller was used to control the temperature and an independent air-conditioner in the wet lab. Maintaining stable air temperature proved difficult with this air-conditioner, and a close eye was kept on the temperature at all times. Analysis stopped if fluctuations in ambient temperature exceeded 1 degree.

**Table A1.1:** Summary of IAPSO Standard Seawater (ISS) batches used for salinometer standardisations during cruise AU0103.

| CTD station number | ISS batch number |
|--------------------|------------------|
| 1-7                | P133             |
| 8-9                | P137             |
| 10-13              | P133 and P137    |
| 14-29              | P137             |
| 30                 | P133             |
| 31-36              | P133 and P140    |
| 37-42              | P140             |
| 43-45              | P133             |
| 46-88              | P140             |
| 89-115             | P133             |
| 116-119            | P140             |
| 120-125            | P133             |
| 126-128            | P140             |
| 129-135            | P133             |
|                    |                  |

\* Files updated:

sal\_std\_check.xls sal62549.xls

# A1.2 Dissolved oxygen

Dissolved oxygen analyses were performed by Stephen Bray in the wet lab. There were no major problems with the DO system. Standardisation and blank values were collated from this and previous cruises, and plotted to help identify outlying or suspicious values. The average standardisation value and average standard deviation was 4.425 +/- 0.002 ml of thiosulphate. This is 297.7 +/- 0.14  $\mu$ mol/l of oxygen, or 0.04%. The average blank value and average standard deviation were 0.006 +/- 0.001 ml of thiosulphate.

#### Files:

```
do_std&blank.xls, a9901
do_std&blank.xls, all collation of DO standardisation values
do_std&blank.xls, charts charts of standardisation values
do.xls, variable summary
do.xls, hydro calc check
```

#### A1.3 Nutrients

Clodagh Moy and Neale Johnston analysed nutrients, timing autoanalyser runs to keep the instrument running over the full 24 hours each day. Phosphate, silicate, nitrite + nitrate were analysed as per CSIRO methods (Cowley, 2001, and Cowley and Johnston, 1999). A new automatic switching valve system was used to change over from reagents to MQ and carrier etc., and included a baseline calibration. Standards were made up every couple of days in low nutrient seawater (collected from Maria Island and filtered and autoclaved, before going on the cruise). The Carrier was Artificial Seawater (or sodium chloride in MQ). New software called 'Winflow' was used, which was user friendly and flexible. A standard run included a baseline calibration using the switching valves, taking approximately 45

mins, followed by a set of standards, some SRMs (Standard Reference Material from Ocean Scientific) and QCs (LNSW spiked with nutrients), and a set of 48 samples followed by a second set of standards, SRMs and QCs. A run normally took about 3 hours to complete.

At the beginning of the cruise there were some problems with the nitrate analyses, resulting in bad peak shapes for  $NO_2/NO_3$ . After much experimentation to trace the problem, the batch of HCl and brij used to make up the reagents was changed - this fixed the problem. Trouble was also experienced with a bad batch of Cd coils (3 coils were used over a two week period). A separate batch brought from CSIRO was then used, with one coil lasting 2 weeks, as expected.

Near the end of the cruise the nitrite/nitrate line leaked over the nitrate detector near the exit of the flow cell. The detector began smoking and burning. The motherboard was destroyed and the detector was no longer usable, useful only for spare parts. An additional minor problem occurred with another detector – it would not zero and kept sitting on wait. The Antarctic Division electronics engineer replaced a transistor with one from the burnt detector, fixing the problem.

Data processing was time consuming, with the procedure as follows for each run:

- first the winflow files are tidied up;
- · pick peaks and check the standards, SRMs and QCs;
- check the baselines;
- data are then exported to Excel to be further processed;
- using the Fyyvvrr.xlt macro to process the data, import the n,s,p files;
- · check the 3-baseline median's (green boxes) and pick the median baseline number;
- check the standards, SRM and QC values;
- check the standard curves and % recovery of the cd coil for N.

When happy with the run, a summary sheet was produced and exported to a \*.xlw file for import into HYDRO (a MS-Excel based program for hydrochemistry data handling). Once imported into HYDRO, a csv file was made.

# A1.4 General data handling

Plots were made of property versus station to check for suspicious data or wrongly entered data. They were based on the data in the CSV file, and were opened via the macro CSV in A0103.XLM. Data was backed up to 250MB Iomega Zip disks.

#### A1.5 Laboratories

The salinometer, DO system and nutrient systems were all in the wet lab. The MQ system was in the photo lab. The wet lab and the photo lab were received in clean condition. The salinometer was on the aft bench, starboard side, near the porthole. The nutrient system was on the remaining aft bench. The DO system was on the starboard sorting bench. The port side bench near the door to the trawl deck was used to prepare reagents and runs for the nutrients. The fish bowl contained the data computer, stationary and manuals.

# A1.6 Temperature monitoring and control

Temperature in the wet lab was controlled by an independent air conditioner on the starboard side bulkhead and by a CAL Controls Ltd 'CAL 9900' proportional derivative plus integral (PID) temperature controller. The photo lab had no temperature controller. The ships heating inlets above the salinometer were taped closed. The temperature from the air-conditioner fluctuated from 11 to 18 degrees. This caused the temperature controller to struggle when down at the lower temperatures, and resulted in one of the heaters blowing its fuse from over-heating. The air conditioner was monitored regularly to reduce large fluctuations in temperature. The photo lab was heated by the ship's air-conditioning and maintained a steady temperature.

Two Tinytalk units recorded the laboratory temperature in the wetlab. One was positioned beside the salinometer, while the other was positioned beside the DO system. The temperature was also measured by a digital thermometer above the salinometer and the temperature monitored by the PID controller in the wet lab. 'Indoor/outdoor' electronic thermometers were used to measure the fridge and freezer. The air temperature about the salinometer was generally 20.0 + - 1°C.

## A1.7 Purified water

A new RO system was bought before the voyage, instead of using the MBDI tanks. The system seemed to work well. However, some air locks were experienced from time to time and the tanks in the polisher emptied. A lot of people were using our MQ system and about 280L ( $\sim 14 \times 20L$  carboys) of water was produced for this cruise. Pre-filters were changed three times, and the polishers once.

## A1.8 Additional samples analysed

Apart from the main CTD hydrochemistry program, a number of samples were analysed for other scientists on board, as described below:

Additional salinities were analysed for the following people:

Andrew Davidson/AAD: 1 sample; Kelly Goodwin/NOAA: 6 samples; Nicolas Savoye/VUB: 11 samples; Bronte Tilbrook/CSIRO: 24 samples;

Additional nutrients were analysed for the following people:

Phil Boyd/Alkali: 49 samples; Pete Sedwick/BBSR: 120 samples; Malcolm Reid/Alkali: 10 samples; Karl Safi/NIWA: 41 samples; Guido Corno/IASOS: 15 samples; Frank Dehairs/VUB: 218 samples;

Bronte Tilbrook/CSIRO: 24 samples.

# Data file types and formats

#### A2.1 CTD data

- CTD no.1193 was used for station 1 to 108. CTD no. 1103 was used for stations 109 to 135.
- CTD data are in text files named \*.all, containing 2-dbar averaged data. An example of file naming convention:

a01035020.all

a = Aurora Australis

01 = year

03 = cruise number

5 = CTD instrument number

020 = CTD station number

• The files consist of a 15 line header with station information (all times are UTC), followed by the data in column format, as follows:

column 1 - pressure (dbar)

column 2 - temperature (degrees C, T90 scale)

column 3 - salinity (PSS78)

column 4 - density-1000 kg/m<sup>3</sup>

column 5 - specific volume anomaly

column 6 - geopotential anomaly

column 7 - dissolved oxygen (µmol/l)

column 8 - no. of data points used in the 2 dbar bin

column 9 - standard deviation of temperature data points in the bin

column 10 - standard deviation of conductivity data points in the bin

columns 11,12 - fluorescence ((volts) and transmittance (if present)

- All files start at 2 dbar, and there is a line for each 2 dbar value. Any missing data is filled by blank characters.
- All CTD data are downcast data.
- For station 76, the data in the 'fluorescence' column is actually from the copper ion selective electrode (in volts).

## A2.2 Niskin bottle data

The bottle data are contained in the a0103.bot text file, with the following columns:

```
column 1 - station number
column 2 - ctd pressure (dbar)
column 3 - ctd temperature (deg. C, T90 scale)
column 4 - digital reversing thermometer temperature
column 5 - ctd conductivity (mS/cm)
column 6 - ctd salinity (PSS78)
column 7 - bottle salinity (PSS78)
column 8 - phosphate (μmol/l)
column 9 - nitrate (μmol/l) (i.e. total nitrate+nitrite)
column 10 - silicate (μmol/l)
column 11 - bottle dissolved oxygen (μmol/l)
column 12 - bottle flag (1=good,0=suspicious,-1=bad,mainly relevant to bottle salinity values for CTD calibration, but not necessarily)
column 13 - niskin bottle number
```

- Columns 2, 3, 5 and 6 are all the averages of CTD upcast burst data (i.e. averages of the 10 seconds of CTD data prior to each bottle firing)
- Any missing data are filled by a decimal point \.'
- The file fluoro.lis contains the same data as a0103.bot, except that there is a line of data for all 24 rosette positions, and for all station numbers, with null values represented by -9. An additional last column contains CTD upcast burst data for fluorescence.

## **A2.3** Station information

A summary of the station information is contained in the a0103.sta file (this station information is also included in the matlab file a0103.mat), containing position, time, bottom depth and maximum pressure of cast for CTD stations. The CTD instrument number is specified in the file header. Position and time (UTC) are specified at the start, bottom and end of the cast, while the bottom depth is for the start of the cast.

## A2.4 Matlab format

- CTD 2 dbar data and bottle data are also contained respectively in the matlab files a0103.mat and a0103bot.mat. a0103.mat includes station information.
- In the matlab files, column number for each array corresponds with CTD station number.
- In the matlab files, NaN is a null value.
- In the bottle file, the rows 1 to 24 are the shallowest to deepest Niskins respectively.
- For the file a0103.mat, the array names have the following meaning: (all times are UTC)
  - 'start' refers to start of cast
  - 'bottom' refers to bottom of cast

```
'end' refers to end of cast
 'decimal time' is decimal days from 2400 on 31st Dec. 2000 (so, for
    example, midday on 2nd January 2001 = decimal time 1.5).
  'lat' is latitude (decimal degrees, where -ve = south)
 'lon' is longitude (decimal degrees, where +ve = east)
 'time' is hhmm time
   botd
            = ocean depth (m)
   maxp
             = maximum pressure of the CTD cast (dbar)
   ctdunit = instrument serial number
  'ctd' is the upcast CTD burst data, for the parameters:
   fluoro
            = fluorescence
            = geopotential anomaly
   qa
            = number of data points used in the 2 dbar bin
   npts
             = dissolved oxygen (µmol/l)
            = pressure (dbar)
   press
            = salinity (PSS78)
   sal
   sigma t = density-1000 (kg/m3)
   sva
             = specific volume anomaly
             = temperature (deg.C T90)
   temp
   transmiss = transmissometer data, mostly suspect
• For the file a0103bot.mat, the array names have the following
   meaning:
  'ctd' refers to upcast CTD burst data, for the parameters:
            = conductivity (mS/cm)
   fluoro
            = fluorescence
   press
           = pressure (dbar)
             = salinity (PSS78)
   sal
            = temperature (deg.C T90)
  'hyd' refers to bottle data, for the parameters:
            = dissolved oxygen (µmol/l)
   sal
            = salinity (PSS78)
            = the bottle flagged described under the bottle data section
   flag
            = niskin bottle number
   niskin
   nitrate, phosphate, silicate = \u03c4mol/l
   station = station number
   therm
             = digital reversing thermometer temperature (deg.C T90)
```

#### A2.5 WOCE data format

The data are also available as WOCE format files, following the standard WOCE format as described in Joyce and Corry (1994).

## A2.5.1 CTD 2 dbar-averaged data files

- Data are contained in the files \*.ctd
- CTD 2 dbar-averaged file format is as per Table 4.7 of Joyce and Corry (1994), except that measurements are centered on even pressure bins (with first value at 2 dbar).
- CTD temperature and salinity are reported to the third decimal place only.

• The quality flags for CTD data are defined in Table A2.1.

#### A2.5.2 Bottle data files

- Data are contained in the file a0103.sea, with the file a0103cfc.sea including CFC data.
- Bottle data file format is as per Table 4.5 of Joyce and Corry (1994), with quality flags defined in Tables A2.2 and A2.3.
- The total value of nitrate+nitrite only is listed.
- Silicate is reported to the first decimal place only.
- CTD temperature (including theta), CTD salinity and bottle salinity are all reported to the third decimal place only.
- CTD temperature (including theta), CTD pressure and CTD salinity are all derived from upcast CTD burst data; CTD dissolved oxygen is derived from downcast 2 dbar-averaged data.
- Raw CTD pressure values are not reported.
- SAMPNO is equal to the rosette position of the Niskin bottle.
- Salinity samples rejected for conductivity calibration, as per eqn A2.20 in Rosenberg et al. (1995), are not flagged in the .sea file.

## A2.5.3 Conversion of units for dissolved oxygen and nutrients

## A2.5.3.1 Dissolved oxygen

#### Niskin bottle data

For the WOCE format files, all Niskin bottle dissolved oxygen concentration values have been converted from volumetric units  $\mu$ mol/I to gravimetric units  $\mu$ mol/kg, as follows. Concentration  $C_k$  in  $\mu$ mol/kg is given by

$$C_k = 1000 C_1 / \rho(\theta, s, 0)$$
 (eqn A2.1)

where  $C_l$  is the concentration in  $\mu mol/l$ , 1000 is a conversion factor, and  $\rho(\theta,s,0)$  is the potential density at zero pressure and at the potential temperature  $\theta$ , where potential temperature is given by

$$\theta = \theta(\mathsf{T},\mathsf{s},\mathsf{p}) \tag{eqn A2.2}$$

for the in situ temperature T, salinity s and pressure p values at which the Niskin bottle was fired. Note that T, s and p are upcast CTD burst data averages.

#### CTD data

In the WOCE format files, CTD dissolved oxygen data are converted to µmol/kg by the same method as above, except that T, s and p in eqns A2.1 and A2.2 are CTD 2 dbar-averaged data.

#### A2.5.3.2 Nutrients

For the WOCE format files, all Niskin bottle nutrient concentration values have been converted from volumetric units µmol/l to gravimetric units µmol/kg using

$$C_k = 1000 C_1 / \rho(T_1, s, 0)$$
 (eqn A2.3)

where 1000 is a conversion factor, and  $\rho(T_I,s,0)$  is the water density in the hydrochemistry laboratory at the laboratory temperature  $T_I = 20.5\,^{\circ}\text{C}$ , and at zero pressure. Upcast CTD burst data averages are used for s.

#### **A2.5.4** Station information file

- Data are contained in the file a0103.sum, with the file format as per section 3.3 of Joyce and Corry (1994).
- All depths are calculated using a uniform speed of sound through the water column of 1463 ms<sup>-1</sup>. Reported depths are as measured from the water surface. Missing depths are due to interference of the ship's bow thrusters with the echo sounder signal.
- An altimeter attached to the base of the rosette frame (approximately at the same vertical position as the CTD sensors) measures the elevation (or height above the bottom) in metres. The elevation value at each station is recorded manually from the CTD data stream display at the bottom of each CTD downcast. Motion of the ship due to waves can cause an error in these manually recorded values of up to ±3 m.
- Wire out (i.e. meter wheel readings of the CTD winch) were unavailable.

**Table A2.1:** Definition of quality flags for CTD data (after Table 4.10 in Joyce and Corry, 1994). These flags apply both to CTD data in the 2 dbar-averaged \*.ctd files, and to upcast CTD burst data in the \*.sea files.

| flag   | definition                                               |
|--------|----------------------------------------------------------|
| 1<br>2 | not calibrated with water samples acceptable measurement |
| 3      | questionable measurement                                 |
| 4      | bad measurement                                          |
| 5      | measurement not reported                                 |
| 6      | interpolated over >2 dbar interval                       |
| 7      | despiked                                                 |
| 8      | this flag not used                                       |
| 9      | parameter not sampled                                    |

**Table A2.2:** Definition of quality flags for Niskin bottles (i.e. parameter BTLNBR in \*.sea files) (after Table 4.8 in Joyce and Corry, 1994).

| flag  | definition                         |
|-------|------------------------------------|
| 1     | this flag is not used              |
| 2     | no problems noted                  |
| 3     | bottle leaking                     |
| 4     | bottle did not trip correctly      |
| 5     | not reported                       |
| 6,7,8 | these flags are not used           |
| 9     | samples not drawn from this bottle |

**Table A2.3:** Definition of quality flags for water samples in \*.sea files (after Table 4.9 in Joyce and Corry, 1994).

| flag | definition                           |
|------|--------------------------------------|
| 1    | this flag is not used                |
| 2    | acceptable measurement               |
| 3    | questionable measurement             |
| 4    | bad measurement                      |
| 5    | measurement not reported             |
| 6    | mean of replicate measurements       |
| 7    | manual autoanalyser peak measurement |
| 8    | this flag not used                   |
| 9    | parameter not sampled                |

## A2.6 ADCP data

ADCP data are available as 30 ensemble averages, contained in the following files:

```
au010301.cny - text format, all data au0103_slow35.cny - text format, 'on station' data (i.e. data for which ship speed \leq 0.35~\text{ms}^{-1}) a0103dop.mat - matlab format, all data a0103dop_slow35.mat - matlab format, 'on station' data (i.e. data for whichship speed \leq 0.35~\text{ms}^{-1})
```

Full file format description is given in the text file README\_au0103\_adcp, included with the data.

# A2.7 Underway data

Ship's underway data (including meteorological data, bathymetry, GPS, and sea surface temperature/salinity/fluorescence), quality controlled by the dotzapper (Ruth Lawless, unpublished data quality control report), are contained in the following files:

```
clivar_underway.ora - text format, 1 minute instantaneous data clivar_underway.mat - matlab format, 1 minute instantaneous data
```

See section 4.5 above for more details. Full file format description is given in the text file README\_clivar\_underway, included with the data. Note that there are a few suspiciously low sea surface salinity values near the start and end of the time series.

# CFC measurements on AU0103 (CLIVAR repeat of P12) - Preliminary shipboard report

Mark J. Warner, University of Washington, School of Oceanography

Box 355351, Seattle, WA 98195-5351 USA

Phone: 206-543-0765, FAX: 206-685-3351, E-mail: mwarner@ocean.washington.edu

Co-investigator: John L. Bullister, NOAA-PMEL

Building 3, 7600 Sand Point Way, Seattle, WA 98115 USA

Phone: 206-526-6741, FAX: 206-526-6744, E-mail: bullister@pmel.noaa.gov

# A3.1 CFC sampling procedures and data processing

**Analysts:** Mark J. Warner, University of Washington

Fred A. Menzia, Joint Institute for the Study of Atmosphere and Ocean

Concentrations of three dissolved chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) were measured in approximately 1350 samples during this section. The sampling procedure and analytical techniques are based upon those described by Bullister and Weiss (1988). Samples for CFC analyses were drawn from the 10-liter Niskins into 100 cm³ ground glass syringes fitted with stainless steel syringe tips. These syringes were stored in a water bath until analyses. A portable laboratory on the heli-deck housed the analytical instrumentation. Underway measurement of atmospheric CFC concentrations was accomplished by pumping air from the bow through approximately 100 m of 3/8-in Dekaron tubing into the CFC portable laboratory. The separation of the CFCs was accomplished using a 46 cm Porasil B, 80/100 mesh precolumn followed by a 1.5 m Carbograph 1AC column in a Shimadzu Mini-2 gas chromatograph.

Shipboard electron capture gas chromatography was used to measure CFC concentrations in air, seawater, and gas standards during the expedition. In general, the precision of the measurements was outstanding during this expedition. The precisions for the response of the detector to injection of an approximately 3.7 cm³ loop of gas standard 33790 (CFC-11: 265.04 parts per trillion, CFC-12: 525.04 ppt, CFC-113: 82.84 ppt ) was 1.04% for CFC-11, 0.63% for CFC-12, and 3.14% for CFC-113 over the entire cruise. Two calibration curves were used for the cruise and show relatively small differences (less than 1% difference in sensitivity over most of the range). Atmospheric concentrations for the CFCs showed very little variation, either temporally or spatially, during the cruise. The mean atmospheric mixing ratios on the SIO93 calibration scale are:

CFC-11: 253.09±1.58 ppt CFC-12: 538.03±1.95 ppt CFC-113: 78.51±1.14 ppt Seawater samples have been corrected for blanks introduced through the analytical system. A residual contamination existed in the valve at the top of the sparging chamber. These blanks, although relatively high, were also fairly constant and reduced during the course of the expedition. The preliminary measurements have not been corrected for any contamination introduced from the Niskin bottles or the sampling procedure. These will be determined from a careful examination of the seawater CFC concentrations at the northern end of the section. Approximately 35 duplicate syringes were sampled and analysed to determine precision for seawater measurements. The calculated precisions are listed below; whichever is smaller, the concentration or percentage, applies to the data:

CFC-11: ±0.0022 pmol kg-1 or 0.74% CFC-12: ±0.0016 pmol kg-1 or 0.74% CFC-113: ±0.0040 pmol kg-1 or 2.7%

These data exceed the precision established for CFC-11 and CFC-12 as WOCE standards. (No standard was set for CFC-113.)

# A3.2 Analytical problems

Prior to CTD 17, a small leak existed in the portion of the system used for analyses of standard gas and bow air samples but not in the portion of the system used for seawater samples. This resulted in apparently high seawater concentrations and surface saturations of CFCs. Shortly before finding this leak, the electrometer on the Shimadzu Mini-2 Gas Chromatograph had been replaced due to poor temperature control for the oven. This complicates the ability to correct the seawater data from CTDs 1-12, since the new electrometer also altered the amplified signal from the ECD. For this preliminary data report, the post-leak calibration curve has been applied to all this data and the seawater concentrations multiplied by the ratio of the sensitivities for 1 large gas sample volume before the leak and after the leak. Prior to fixing the leak, the precision of measured CFC-113 concentrations in the gas standards was too poor to attempt to measure seawater concentrations. CFC-113 concentrations are only reported after CTD 16.

A small amount of contamination was introduced to the analytical system through the use of a lubricating spray in the deadbolt on the van door. The baseline drifted upward and became very noisy for 1.5 days. Low-concentration samples of CFC-113 are suspect (WOCE flag = 3) during this period (CTD 60-2) due to baseline noise. The signal-to-noise is much greater for both CFC-11 and CFC-12, so these gases appear to be unaffected by the problem.

A few samples showed obvious signs of contamination and have been flagged as bad (WOCE flag = 4). There may be other suspect data which have yet to be identified and flagged.

# **Inter-cruise comparisons**

## A4.1 Introduction

Inter-cruise comparisons for data collected along the SR3 transect during the 1990s are described in Rosenberg et al. (1997). Comparisons are extended here to include this latest occupation of SR3. Brief comparisons of salinity, dissolved oxygen and nutrient data are made between au0103 data and data from cruises au9601 (August-September 1996) and au9404 (January-February 1995).

Overlapping stations from the three cruises (Table A4.1) were selected with the requirement of a spacial separation less than 3 nautical miles. In most cases, spacial separation is in fact less than 1 nautical mile. Meridional sections of neutral density (McDougall, 1987) are shown in Figures A4.1a to c, including CTD station positions.

**Table A4.1:** Stations from each cruise used for parameter comparisons (latitudes are for au0103).

| Latitude<br>(degrees) | au010 | au9601 | au9404 | Latitude<br>(degrees) | au0103 | au9601 | au9404 |
|-----------------------|-------|--------|--------|-----------------------|--------|--------|--------|
| -44.0027              | 2     | 69     | 106    | -52.3717              | 45     | 37     | -      |
| -44.0537              | 3     | 68     | -      | -52.6672              | 46     | 36     | 83     |
| -44.1165              | 4     | 67     | 105    | -53.1312              | 48     | 35     | 82     |
| -44.3692              | 5     | 66     | -      | -54.0687              | 54     | 33     | 80     |
| -44.7225              | 6     | 65     | 103    | -54.5320              | 56     | 32     | 79     |
| -45.2192              | 7     | 64     | 102    | -55.0162              | 57     | 31     | 78     |
| -45.7337              | 9     | 63     | 101    | -55.4802              | 59     | 30     | 77     |
| -46.1687              | 10    | 62     | 100    | -55.9217              | 60     | 29     | -      |
| -46.6432              | 11    | 61     | 99     | -56.4260              | 61     | 28     | -      |
| -47.1480              | 13    | 60     | -      | -56.9322              | 63     | 27     | 75     |
| -47.4440              | 19    | 59     | 97     | -57.8525              | 66     | 25     | -      |
| -47.9993              | 20    | 58     | -      | -58.8493              | 67     | 23     | -      |
| -48.3187              | 21    | 57     | 95     | -59.3490              | 69     | 22     | -      |
| -49.2715              | 26    | 55     | 93     | -59.8367              | 71     | 21     | 71     |
| -49.6083              | 28    | 54     | -      | -60.3502              | 72     | 20     | -      |
| -49.8930              | 29    | 46     | -      | -60.8362              | 75     | 19     | -      |
| -50.1620              | 30    | 45     | -      | -61.3185              | 78     | 18     | 69     |
| -50.6718              | 33    | 43     | 89     | -61.8502              | 79     | 17     | 68     |
| -51.2592              | 39    | 41     | -      | -62.3497              | 80     | 16     | 67     |
| -51.5380              | 40    | 40     | -      | -62.8432              | 82     | 15     | 66     |
| -51.8095              | 41    | 39     | 85     | -63.3705              | 83     | -      | 65     |
| -52.0853              | 43    | 38     | -      | -64.5207              | 90     | 12     | -      |

# A4.2 Salinity

The meridional variation of the salinity maximum (i.e. for Lower Circumpolar Deep Water, as defined by Gordon, 1967) is compared for the three cruises. Using the 2 dbar averaged CTD salinity data, differences are formed between the deep water salinity maxima for the cases au0103-au9601, au0103-au9404, and au9601-au9404 (Figure A4.2). A mean difference value is included with each figure. (Note that temperatures at the deep salinity maximum are above zero, thus au0103 salinities here are unaffected by the conductivity error at depth for subzero waters, discussed in section 5.1.1). For each cruise pairing, several outliers are omitted – these outliers are due either to curtailing of the vertical salinity profile by the bottom, or change in vertical profile character due to the movement of fronts (Figures A4.1a to c). Note that for au9601-au9404, a similar comparison was done in Rosenberg et al. (1997), giving a mean difference value of -0.004 (PSS78). The slightly different value here of -0.0033 (PSS78) is due to the omission of outliers.

The au0103-au9601 comparison (Figure A4.2) shows salinity correspondence between the 2 cruises within 0.001 (PSS78). For both these cruises, Guildline Autosal salinometers were used for analysis of salinity Niskin bottle samples. The au0103-au9404 and au9601-au9404 differences of approximately -0.003 (Figure A4.2) are larger. These consistently larger differences are due to the less accurate YeoKal salinometer used on au9404, as discussed in Rosenberg et al. (1997).

In an earlier comparison between cruises au9601 and me9706 (in Rosenberg et al., 1997), with Guildline salinometers used on both these cruises, a mean difference of -0.002 (PSS78) was found. The larger magnitude of this difference compared to the au0103-au9601 value is attributed to a standardisation offset on cruise me9706, possibly due to unstable laboratory temperature.

## A4.3 Niskin bottle data

Dissolved oxygen and nutrient bottle data from cruises au0103, au9601 and au9404 are compared on neutral density surfaces. Neutral density values are calculated using a routine by David Jackett (CSIRO Division of Marine Research, Hobart); oxygen and nutrient bottle data are interpolated onto neutral density surfaces using a routine by Serguei Sokolov (CSIRO Division of Marine Research, Hobart) (using bilinear interpolation). Station pairings are as per Table A4.1. Note that only data below 1000 dbar are used – this excludes from the comparisons the most seasonally varying data, as well as data in the highest vertical gradients. Meridional variations of parameter differences on 10 neutral density (i.e.  $\gamma$  ) surfaces are shown as follows:

- Figure A4.3 for dissolved oxygen,
- Figure A4.4 for phosphate,
- Figure A4.5 for nitrate+nitrite,
- Figure A4.6 for silicate.

For each parameter, differences are shown for the cases au0103-au9601, au0103-au9601, au0404.

## A4.3.1 Dissolved oxygen

For all three cruises, oxygen bottle samples were analysed using the automated titration system developed by Woods Hole Oceanographic Institution (Knapp et al., 1990).

From Figures A4.3a to c, au0103 oxygen values are mostly higher than values for au9601 and au9404, while au9601 values are mostly higher than au9404. For density surfaces 27.8 to 28.3 over the latitude range 47 to 64°S, the following mean differences (with standard deviations) are found:

```
au0103-au9601 2.2 \mumol/l \pm 2.29 \mumol/l au0103-au9404 4.2 \mumol/l \pm 1.73 \mumol/l au9601-au9404 2.1 \mumol/l \pm 2.33 \mumol/l
```

From Appendix 1, oxygen standardisation values for au0103 were reasonably stable ( $\pm 0.14$  µmol/l). For au9601, a jump in standardisation values was noted after station 40 (Rosenberg et al., 1997), i.e. after latitude  $\sim 51.5^{\circ}$ S. This jump, of the order 2 µmol/l, is not obvious in the comparisons shown in Figures A4.3a and c.

## A4.3.2 Phosphate

From the inter-cruise comparisons in Rosenberg et al. (1997), au9601 phosphate values were found to be lower than all earlier cruises by  $\sim 0.1~\mu mol/I$ , and confirmation of the assumed improvement of phosphate data for au9601 was required from a future cruise. From Figures A4.4a to c, au0103 and au9601 phosphates are both consistently lower than au9404. For density surfaces 27.8 to 28.3 over the latitude range 47 to 64°S, the following mean differences (with standard deviations) are found:

Although there is some scatter about the mean zero au0103-au9601 phosphate difference (Figure A4.4a), the standard deviation value is only  $\sim 1.5\%$  of full scale (where full scale = 3.0  $\mu$ mol/l), and phosphate values appear mostly consistent for au0103 and au9601 south of 48°S. This confirms the improvement in phosphate analytical methods for au9601 and au0103, compared with earlier cruises, with the error in earlier cruises due to the phosphate analysis 'carryover effect' discussed in Rosenberg et al. (1997). North of  $\sim 48$ °S, au0103 phosphate is higher than au9601 by  $\sim 0.06$   $\mu$ mol/l (Figure A4.4a).

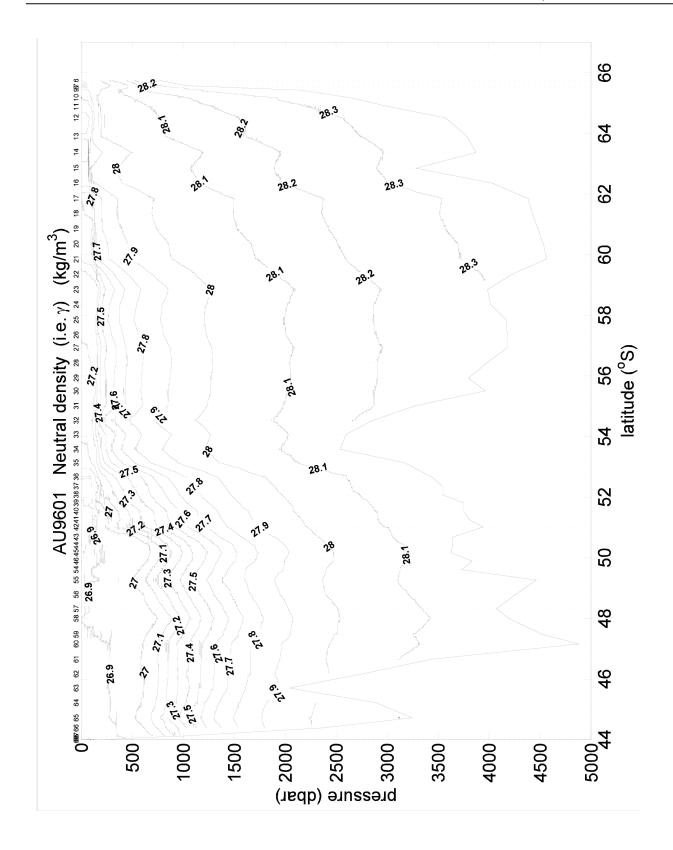
#### A4.3.3 Nitrate+nitrite

Inter-cruise comparisons for nitrate+nitrite (Figures A4.5a to c) are not as simple to summarise as phosphate. The clearest trends are north of 49°S and south of 61°S, where nitrate+nitrite concentrations are (from highest to lowest): au0103, au9404, au9601. Between 49 and 61°S, differences are in general scattered about zero, except for au0103-au9601 which is mostly positive between 54 and 61°S (Figure A4.5a). For all density surfaces over all latitudes, the following mean differences (±standard deviations) are found:

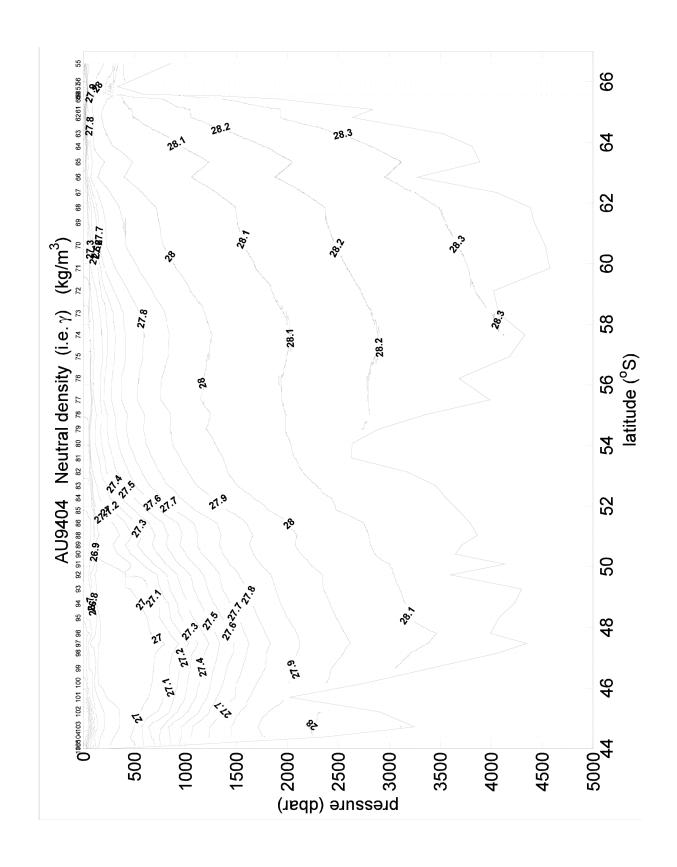
| latitude range 45 – 49°S | au0103-au9601 | 1.07 µmol/l  | ± 0.40 µmol/l          |
|--------------------------|---------------|--------------|------------------------|
| -                        | au0103-au9404 | 0.34 µmol/l  | ± 0.34 µmol/l          |
|                          | au9601-au9404 | -0.59 µmol/l | ± 0.46 µmol/l          |
| latitude range 49 - 54°S | au0103-au9601 | 0.23 µmol/l  | ± 0.69 μmol/l          |
|                          | au0103-au9404 | -0.09 µmol/l | ± 0.74 µmol/l          |
|                          | au9601-au9404 | -0.02 µmol/l | ± 0.66 µmol/l          |
| latitude range 54 - 61°S | au0103-au9601 | 0.28 µmol/l  | ± 0.29 μmol/l          |
|                          | au0103-au9404 | 0.12 µmol/l  | ± 0.38 µmol/l          |
|                          | au9601-au9404 | 0.06 µmol/l  | ± 0.60 µmol/l          |
| latitude range 61 - 65°S | au0103-au9601 | 1.15 µmol/l  | ± 0.26 µmol/l          |
|                          | au0103-au9404 | 0.39 µmol/l  | ± 0.26 µmol/l          |
|                          | au9601-au9404 | -0.74 µmol/l | $\pm$ 0.17 $\mu$ mol/l |

The largest scatter for all three cruises is between 49 and 54°S, where standard deviations in the above table are  $\sim$ 2% of full scale (where full scale = 35  $\mu$ mol/l).

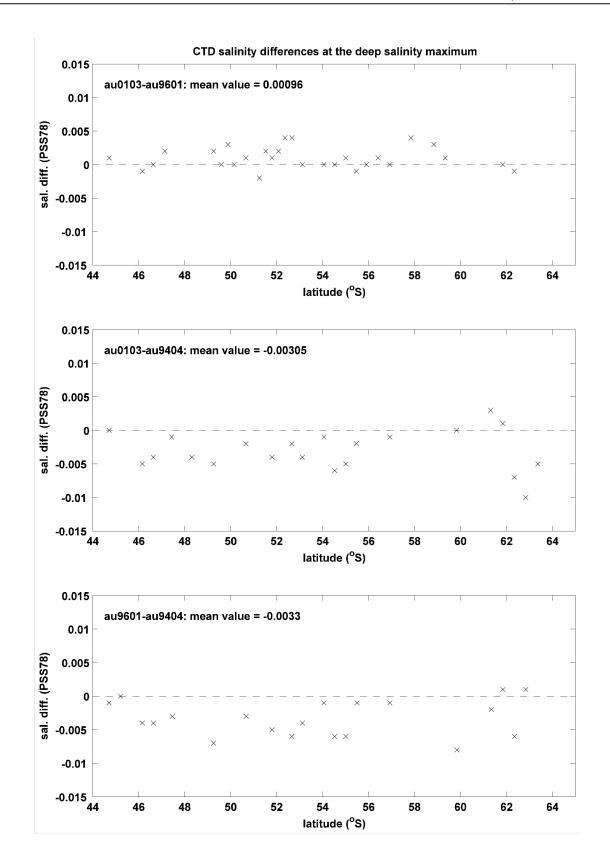
#### A4.3.4 Silicate


Silicate concentrations for au0103 are mostly higher than for au9601 and au9404 (Figures A4.6a and b), while values for au9601 and au9404 appear mostly consistent, with no significant offset (Figure A4.6c). For all density surfaces over all latitudes, the following mean differences (±standard deviations) are found:

```
au0103-au9601 4.0 \mumol/l \pm 3.5 \mumol/l au0103-au9404 5.8 \mumol/l \pm 3.2 \mumol/l au9601-au9404 0.9 \mumol/l \pm 4.0 \mumol/l
```


For silicate, the standard deviation values are all higher than 2% of full scale (where full scale =  $150 \mu mol/l$ ). So overall the inter-cruise scatter of silicate values is higher than for the other nutrients, confirmed by close inspection of individual stations (Bronte Tilbrook, CSIRO Division of Marine Research, personal communication).




**Figure A4.1a:** Meridional section of neutral density for cruise au0103 along SR3 transect, including CTD station positions.



**Figure A4.1b:** Meridional section of neutral density for cruise au9601 along SR3 transect, including CTD station positions.



**Figure A4.1c:** Meridional section of neutral density for cruise au9404 along SR3 transect, including CTD station positions.



**Figure A4.2:** CTD salinity differences at the deep salinity maximum, along the SR3 transect. Differences shown for au0103-au9601, au0103-au9404, and au9601-au9404.

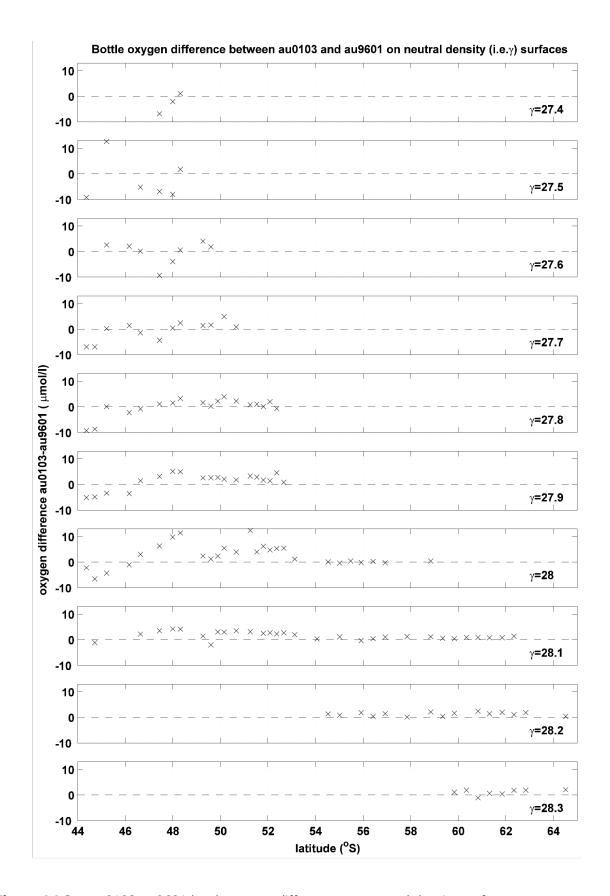



Figure A4.3a: au0103-au9601 bottle oxygen differences on neutral density surfaces.

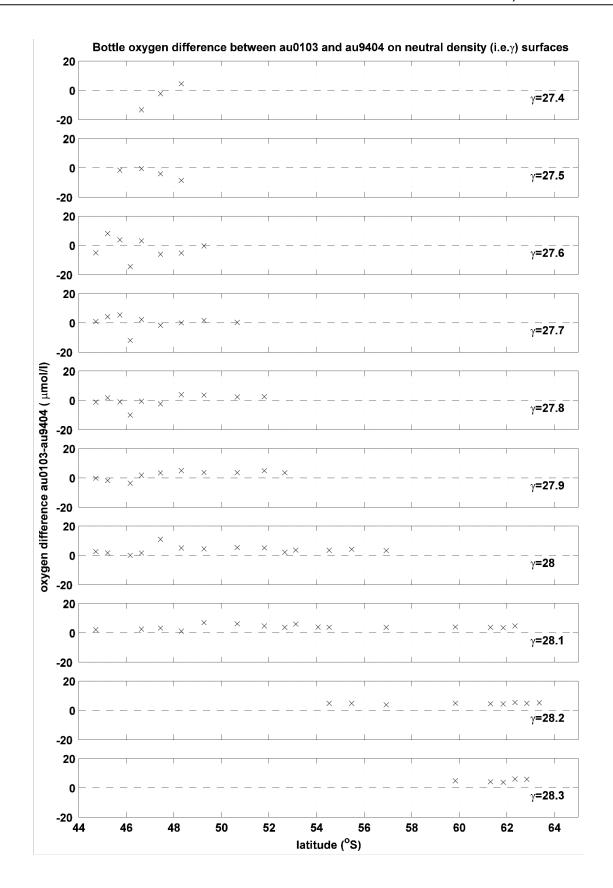
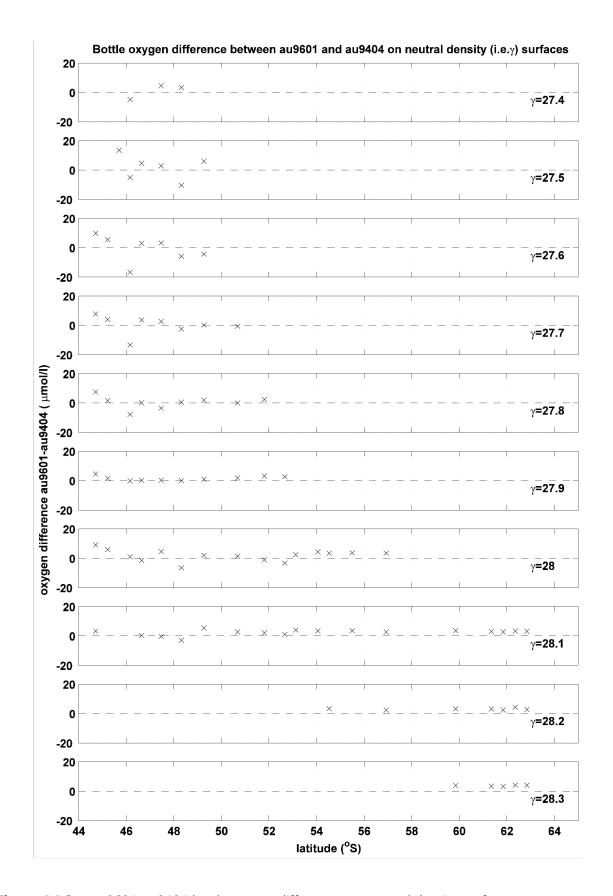
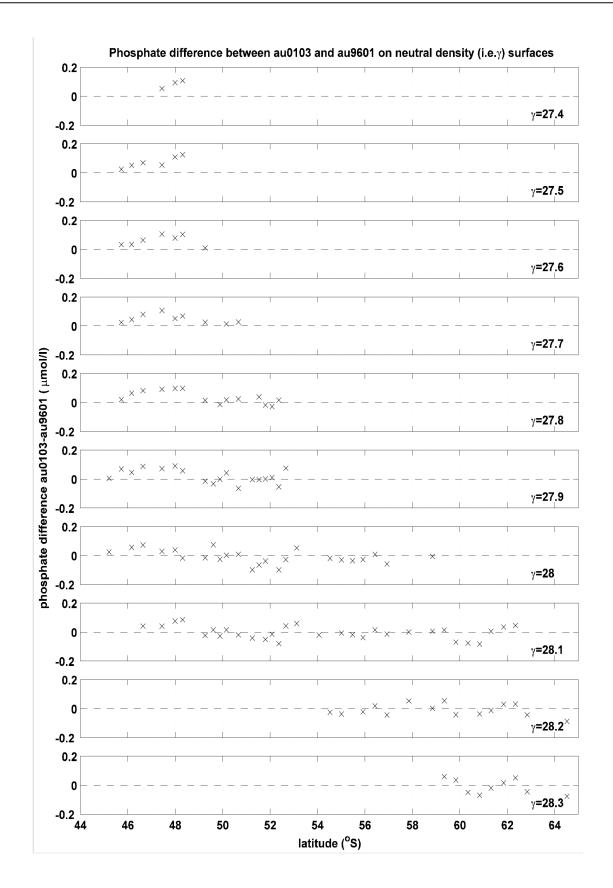
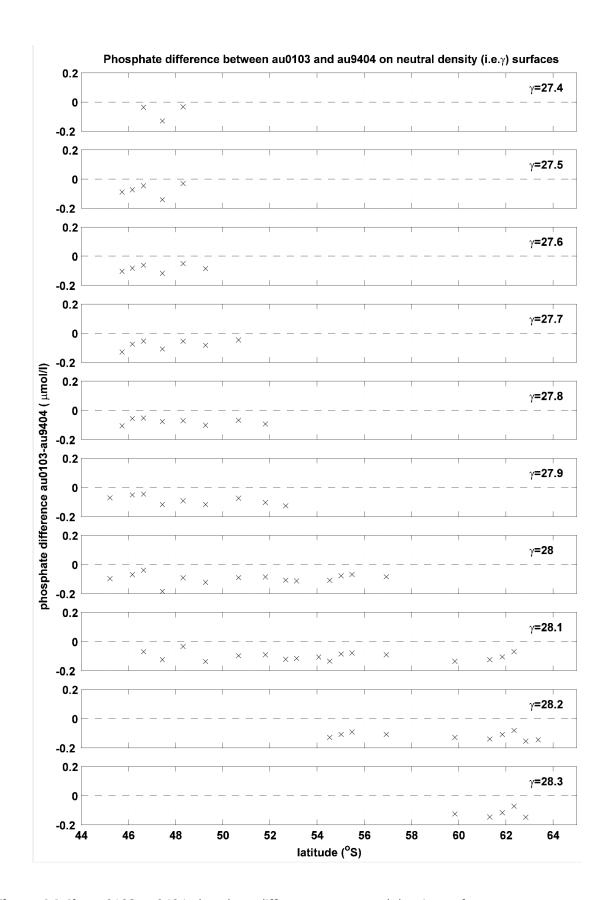
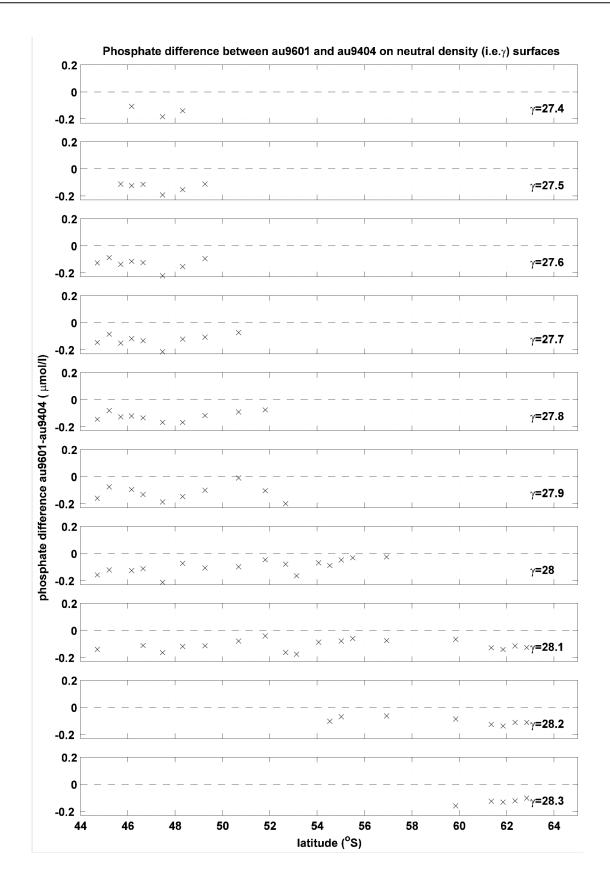



Figure A4.3b: au0103-au9404 bottle oxygen differences on neutral density surfaces.



Figure A4.3c: au9601-au9404 bottle oxygen differences on neutral density surfaces.



**Figure A4.4a:** au0103-au9601 phosphate differences on neutral density surfaces.



**Figure A4.4b:** au0103-au9404 phosphate differences on neutral density surfaces.



**Figure A4.4c:** au9601-au9404 phosphate differences on neutral density surfaces.

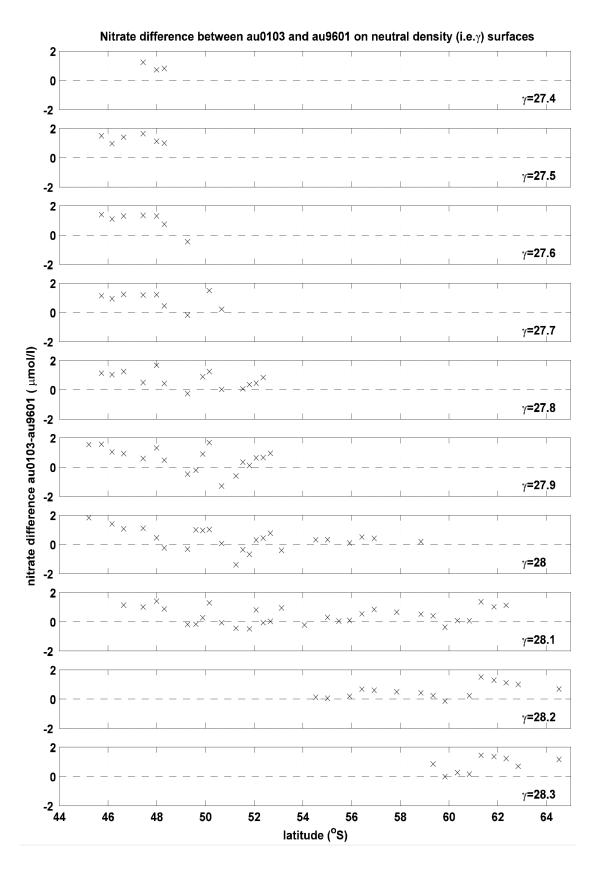



Figure A4.5a: au0103-au9601 nitrate+nitrite differences on neutral density surfaces.

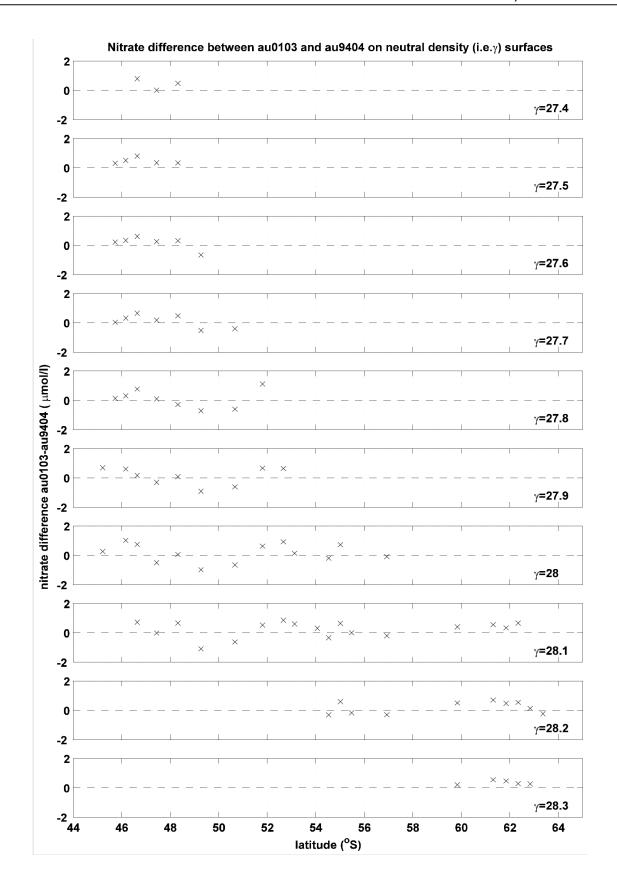
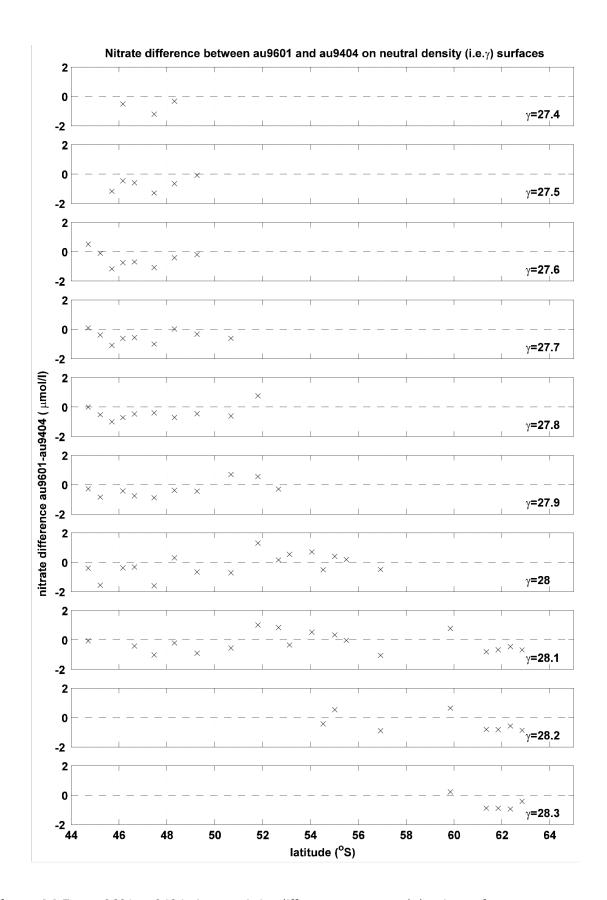




Figure A4.5b: au0103-au9404 nitrate+nitrite differences on neutral density surfaces.



**Figure A4.5c:** au9601-au9404 nitrate+nitrite differences on neutral density surfaces.

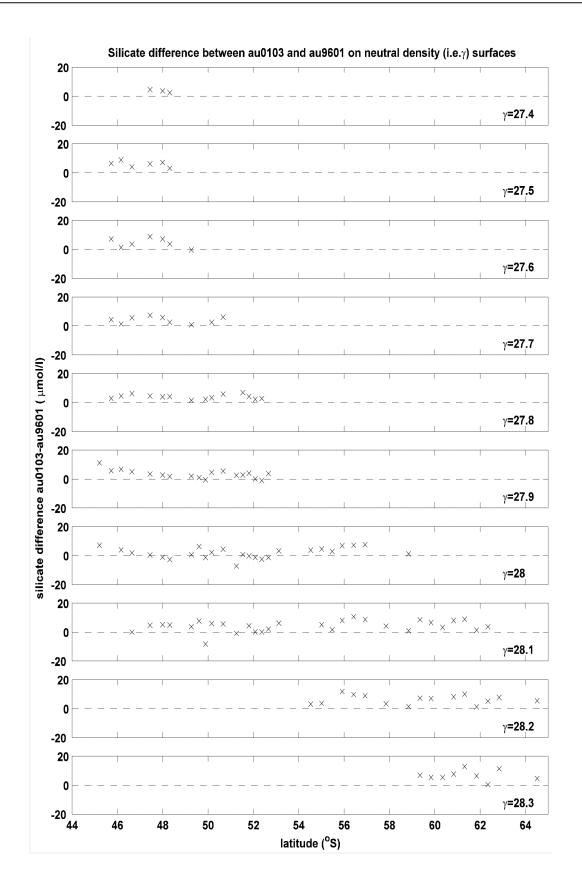
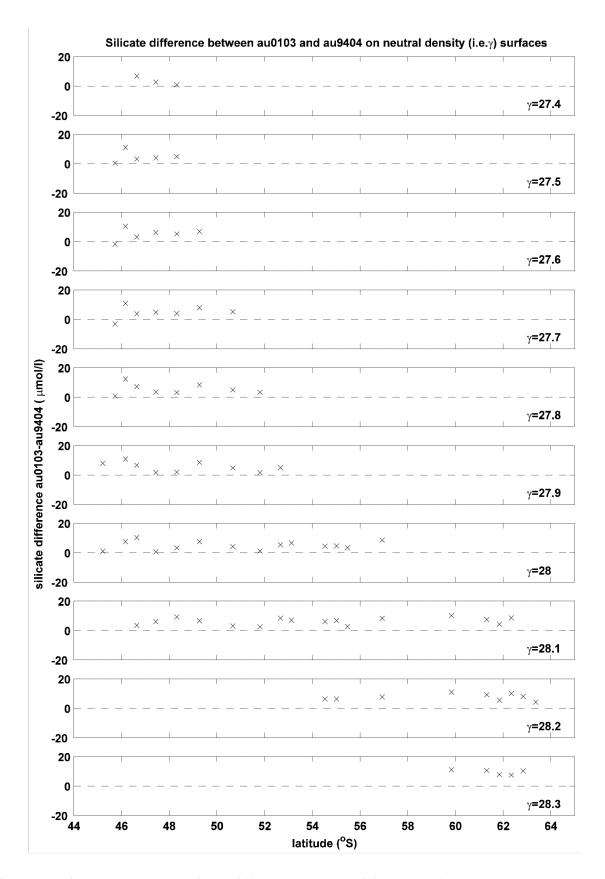
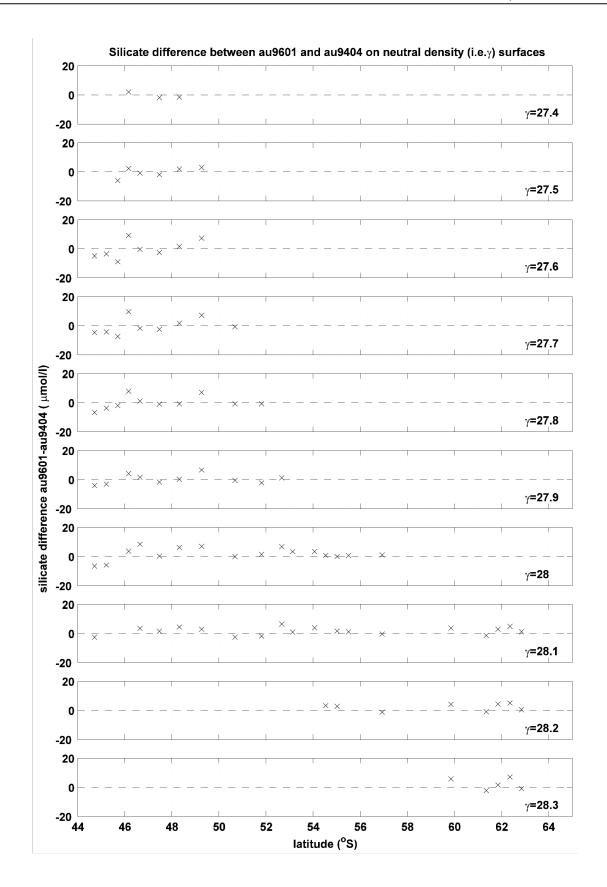





Figure A4.6a: au0103-au9601 silicate differences on neutral density surfaces.



**Figure A4.6b:** au0103-au9404 silicate differences on neutral density surfaces.



**Figure A4.6c:** au9601-au9404 silicate differences on neutral density surfaces.

## References

- Aoki, S., Rintoul, S.R. and Ushio, S., 2005a. Freshening of the Adelie Land Bottom Water along 140E. *Geophysical Research Letters* (submitted).
- Aoki, S., Rintoul, S.R., Hasumoto, H. and Kinoshita, H., 2005b. Frontal positions and mixed layer evolution in the seasonal ice zone along 140E in 2001-2. *Deep-Sea Research* (submitted).
- Bullister, J.L. and Weiss, R.F., 1988. Determination of  $CCl_3F$  and  $CCl_2F_2$  in seawater and air. Deep-Sea Research, Vol. 35 (5), pp839-853.
- Cardinal, D., Alleman, L.Y., Dehairs, F., Savoye, N., Trull, T.W. and André, L., 2005a. Relevance of silicon isotopes to fingerprint Si-nutrient utilization and water masses in the Southern Ocean. *Global Biogeochemical Cycles*, 19, GB2007, doi:10.1029/2004GB002364.
- Cardinal, D., SAvoye, N., Trull, T.W., André, L., Kopczynska, E.E. and Dehairs, F., 2005b. Variations of carbon remineralisation in the Southern Ocean illustrated by the Baxs proxy. *Deep-Sea Research I* Vol. 52, pp355-370.
- Cowley, R., 2001. A practical manual for the determination of salinity, dissolved oxygen, and nutrients in seawater. CSIRO Division of Marine Research report, 2001.
- Cowley, R. and Johnston, N., 1999. *Investigations into the chemistry used for orthophosphate analysis in seawater*. CSIRO Division of Marine Research report, July 1999.
- Curran, C and S. Bray, 2003. A Practical manual for the determination of Salinity, Dissolved Oxygen and Nutrients in Seawater. Antarctic CRC Research Report, 2003.
- Gordon, A.L., 1967. Structure of Antarctic waters between 20°W and 170°W. Antarctic Map Folio Series, Folio 6, Bushnell, V. (ed.). American Geophysical Society, New York.
- Jacquet, S.H.M., Dehairs, F. and Rintoul, S., 2004. A high resolution transect of dissolved barium. *Geophysical Research Letters*, Vol. 31 (14): Art. No. L14301.
- Jacquet, S., de Brauwere, A., Dehairs, F., Elskens, M., Jeandel, C., Metzl, N., Rintoul, S. and Trull, T., 2005. Comparison of dissolved Barium with Nutrients and Physico-chemical conditions along 30°E and 145°E across the Southern Ocean, EGU 2005, Vienna, abstract.
- Joyce, T. and Corry, C. (editors), 1994. Requirements for WOCE Hydrographic Programme Data Reporting. WHP Office Report WHPO 90-1, Revision 2, WOCE Report No. 67/91, Woods Hole Oceanographic Institution. 144 pp. (unpublished manuscript).
- Knapp, G.P., Stalcup, M.C., and Stanley, R.J., 1990. *Automated Oxygen Titration and Salinity Determination*. Woods Hole Oceanographic Institution Technical Report WHOI-90-35.
- McDougall, T.J., 1987. Neutral surfaces. *Journal of Physical Oceanography* Vol. 17, pp1950-1964.

- Rintoul, S.R. and Bullister, J.L., 1999. A late winter hydrographic section from Tasmania to Antarctica. *Deep-Sea Research I* Vol. 46, pp1417-1454.
- Rosenberg, M., Eriksen, R., Bell, S., Bindoff, N. and Rintoul, S., 1995. *Aurora Australis marine science cruise AU9407 oceanographic field measurements and analysis*.

  Antarctic Cooperative Research Centre, Research Report No. 6, July 1995. 97 pp.
- Rosenberg, M., Bray, S., Bindoff, N., Rintoul, S., Johnston, N., Bell, S. and Towler, P., 1997.

  Aurora Australis marine science cruises AU9501, AU9604 and AU9601 oceanographic field measurements and analysis, inter-cruise comparisons and data
  quality notes. Antarctic Cooperative Research Centre, Research Report No. 12,
  September 1997. 150 pp.
- Rosenberg, M., unpublished. *Aurora Australis ADCP data status.* Antarctic Cooperative Research Centre, unpublished report, November 1999. 51 pp.
- Rosenberg, M., Bindoff, N., Bray, S., Curran, C., Helmond, I., Miller, K., McLaughlan, D. and Richman, J., 2001. *Mertz Polynya Experiment, marine science cruises AU9807, AU9801, AU9905, AU9901 and TA0051 oceanographic field measurements and analysis*. Antarctic Cooperative Research Centre, Research Report No. 25, June 2001. 89 pp.

# **Acknowledgements**

Thanks to all scientific personnel who participated in the cruise, and to the crew of the RSV Aurora Australia. The work was supported by the Australian Government's Cooperative Research Centre (CRC) Programme through the Antarctic Climate & Ecosystems CRC, the Australian Antarctic Division (ASAC Project Number 1335), and by the Australian Greenhouse Office of the Department of Environment and Heritage through the CSIRO Climate Change Science Program.

# **Core Participants**

Australian Antarctic Division
University of Tasmania
CSIRO Marine & Atmospheric Research
Australian Bureau of Meteorology

# **Supporting Participants**

Alfred Wegener Institute for Polar and Marine Research
Australian Greenhouse Office
Australian National University
National Institute of Water and Atmospheric Research
Silicon Graphics International
Tasmanian Department of Economic Development

### Address

ACE CRC

Private Bag 80

Hobart, Tasmania Australia 7001

P +61 3 6226 7888

F +61 3 6226 2440

E enquiries@acecrc.org.au

www.acecrc.org.au

Established and supported under the Australian Government's Cooperative Research Centres Programme

### **CCHDO DATA PROCESSING NOTES**

DATE CONTACT DATA TYPE EVENT

03/01/2007 Rosenberg CTD/BTL/SUM Submitted

Have just "uploaded" 5 Southern Ocean Aurora Australis cruises to your website.

09AR0103\_woce.zip (SR3 i.e. P12)

09AR0106 woce.zip (Amery Ice Shelf part 1, no WOCE ID)

09AR0207 woce.zip (Amery Ice Shelf part 2, no WOCE ID)

09AR0304 woce.zip (includes a transect close to I08S)

09AR0403 woce.zip (I09S, plus repeat of transect close to I08S)

- For the last of these, 09AR0403, CFC data were measured but are not yet available (should have included that in the notes I entered to your website).
- Carbon data (DIC, alkalinities etc.) are available for some of these cruises will get them to you at a later date.

File: 09AR0103 woce.zip

Type: zipped ctd/bottle data

Status: Public

Name: Rosenber, Mark

Institute: ACE CRC
Country: Australia

Expo: 09AR0103 Line: SR3

Date: 10/2001

Action: Place Data Online

Notes:

- WOCE format files
- pdf data report includes data quality information

# 06/01/2007 BARTOLOCCI CTD/BTL/SUM Data Reformatted/Online Reformatting notes for sr03 p12 sent by Mark Rosenburg:

### SUM:

- Changed expocode from 09AR0103/1 to 09AR20011029.
- removed zero from missing lat/lon columns to leave blank.
   (zero value was not at equator, but missing value)
- Added name/date stamp.
- Ran sumcheck. Only warnings were missing lat/lon for specific stations.

### SEA:

- Changed expocode from 09AR0103/1 to 09AR20011029.
- Added name/date stamp.
- Ran wocecvt, with no errors. Warnings for duplicate depth/press only.

DATE CONTACT DATA TYPE EVENT

\_\_\_\_\_\_

06/01/2007 BARTOLOCCI CTD/BTL/SUM (continued) CTD:

- Added name/date stamp.
- Changed expocode from 09AR0103/1 to 09AR20011029.
- ran wctcvt. Changed the following files' dates to match the sumfile (dates of cast began on one day however majority of cast was conducted on the next day. CTD files reflect BO and EN sumfile dates). wctcvt ran with no errors after these edits.

### stn/cst:

- 16/1 changed day from 4 to 5
- 31/1 changed day from 8 to 9
- 37/1 changed day from 9 to 10
- 42/1 changed day from 10 to 11
- 69/1 changed day from 18 to 19
- 97/1 changed day from 27 to 28

### To Make Exchange:

The following edits were made to the sumfile in order to convert files into exchange format:

- removed all cast code entries with no navigation information. BO cast codes for station/casts: 34/1, 35/1, 36/1, 37/1, 38/1 49/1, 50/1, 60/1, 135/1
- removed all dashes representing missing values.
- · filled in any empty SECT ID spaces with UNK.

Exchange bottle and CTD files were then created successfully.